Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. De Visscher is active.

Publication


Featured researches published by A. De Visscher.


Ultrasonics Sonochemistry | 2001

Ultrasonic degradation of trichloroethylene and chlorobenzene at micromolar concentrations: kinetics and modelling.

Jo Dewulf; H. Van Langenhove; A. De Visscher; S. Sabbe

Although most papers in the field of sonochemical degradation of volatile organics in aqueous media describe experiments at the millimolar concentration range, this study focuses on the degradation kinetics of chlorobenzene (CB) and trichloroethylene (TCE) in the micromolar range. It was found that the reaction kinetics increase with decreasing initial substrate concentrations. For example, the pseudo-first-order reaction rate constant of CB increases by a factor of 14.3, if the initial concentration drops from 3440 to 1 microM. Previous work in the millimolar range has shown that the degradation of these volatiles is mainly due to pyrolytic reactions. The enhancement of the reaction kinetics at lower concentrations, in this work, could no longer be explained by this mechanism, even by taking into account the effect of the concentration of the solutes on the reaction temperature. Therefore, a new model was developed, incorporating gas phase OH radical induced degradation, next to pyrolysis. The model, fitting the experimental results, illustrated that at micromolar concentrations the OH radical induced degradation becomes significant. Simulations showed that at initial concentrations of CB > 1000 microM degradation is due to pyrolysis for over 99.97%, but it was also demonstrated that at concentrations between 1 and 5 microM, the OH radical mechanism contributed 48.5% of the total degradation.


Journal of Applied Meteorology | 2002

Ammonia emissions from anaerobic swine lagoons: Model development

A. De Visscher; Lowry A. Harper; P. W. Westerman; Z. S. Liang; J. Arogo; Ron R. Sharpe; O. Van Cleemput

Concentrated animal production may represent a significant source for ammonia emissions to the environment. Most concentrated animal production systems use anaerobic or liquid/slurry systems for wasteholding; thus, it is desirable to be able to predict ammonia emissions from these systems. A process model was developed to use commonly available measurements, including effluent concentration, water temperature, wind speed, and effluent pH. The developed model simulated emissions, as measured by micrometeorological techniques, with an accuracy that explains 70% of the variability of the data using average daily emissions and explains 50% of the variability of the data using 4-h average data. The process model did not show increased accuracy over a statistical model, but the deviations between model and measurement were distributed more evenly in the case of the process model than in the case of the statistical model.


Ultrasonics Sonochemistry | 1997

Sonochemical degradation of ethylbenzene in aqueous solution: a product study.

A. De Visscher; H. Van Langenhove; P. Van Eenoo

Abstract The degradation of ethylbenzene in aqueous solution by 520 kHz ultrasound was investigated. The products formed were analysed using solid phase microextraction (SPME), a sampling technique that allows convenient GC-MS and GC-FID analysis in the micromolar range. A broad range of monosubstituted monocyclic and dicyclic aromatic hydrocarbons was found as well as some oxygenated products. The results clearly indicate that pyrolysis is an important pathway of ethylbenzene degradation. The side chain is dehydrogenated, forming styrene, or cleaved. The radicals formed upon cleavage are subsequently added to the double bond of the styrene side chain or recombined. This mechanism explains the formation of most of the products. Formation are breakdown of the reaction products follow first-order kinetics in spite of the fact that the selectivity of the reactions depends on the initial ethylbenzene concentration considerably. Changes in the temperature and the pressure of cavitation are expected to cause this dependence.


Journal of Dairy Science | 2012

Differences between coagulase-negative Staphylococcus species in persistence and in effect on somatic cell count and milk yield in dairy goats

G. Koop; S. De Vliegher; A. De Visscher; K. Supré; Freddy Haesebrouck; M. Nielen; T. van Werven

Coagulase-negative staphylococci (CNS) are the most commonly isolated bacteria from goat milk. The goal of this study was to explore and describe differences between CNS species in persistence of intramammary infection (IMI) and in effect on somatic cell count (SCC) and milk yield (MY). Milk samples were collected from 530 does from 5 Dutch dairy goat herds on 3 occasions during 1 lactation. Coagulase-negative staphylococci species were identified at the species level by transfer RNA-intergenic spacer PCR (tDNA-PCR) followed by capillary electrophoresis. The most prevalent CNS species were Staphylococcus caprae, Staphylococcus epidermidis, Staphylococcus simulans, and Staphylococcus xylosus, but large differences were seen in species distribution between herds. Staphylococcus caprae and Staph. xylosus appeared to be more persistent than other species, but confidence intervals were overlapping. The effect of IMI caused by the 4 most prevalent CNS species on SCC and on MY was determined with linear regression models, and Staph. aureus and Corynebacterium bovis were included in the analyses as reference organisms. Most species were associated with a significantly higher SCC than noninfected udder halves, but the effect of CNS species on SCC was much smaller than the effect of Staph. aureus on SCC. We found a significant positive association between infection with Staph. caprae and MY. Intramammary infection caused by Staph. xylosus, on the other hand, had a negative association with milk yield, comparable to the effect of Staph. aureus, but these effects were not significantly different from zero. Intramammary infections with CNS species have a high prevalence in goats and are persistent, but have a limited effect on SCC compared with IMI with Staph. aureus. The effect of CNS species on MY differed between species, but differences were nonsignificant because limited numbers per species were available for analysis. Therefore, CNS species appear to behave as minor pathogens in goats, but larger studies are needed to give better estimates for the effect on MY.


Journal of Dairy Science | 2016

Intramammary infection with coagulase-negative staphylococci at parturition: Species-specific prevalence, risk factors, and effect on udder health

A. De Visscher; Sofie Piepers; Freddy Haesebrouck; S. De Vliegher

Coagulase-negative staphylococci (CNS) are the main cause of bovine intramammary infections (IMI) in many countries. Despite a high prevalence of CNS IMI at parturition, species-specific risk factor studies, relying on accurate identification methods, are lacking. Therefore, this observational study aimed at determining the prevalence and distribution of different CNS species causing IMI in fresh heifers and dairy cows in Flemish dairy herds and identifying associated species- and subgroup-specific risk factors at the herd, cow, and quarter level. The effect on udder health was investigated as well. Staphylococcus chromogenes, S. sciuri, and S. cohnii were the most frequently isolated species. The only CNS species causing IMI in fresh heifers and dairy cows in all herds was Staphylococcus chromogenes, whereas large between-herd differences in distribution were observed for the other species. Quarters from heifers and quarters with an inverted teat end had higher odds of being infected with S. chromogenes, S. simulans, or S. xylosus as well as with S. chromogenes solely. Prepartum teat apex colonization with S. chromogenes increased the likelihood of S. chromogenes IMI in the corresponding quarters at parturition. Quarters with dirty teat apices before calving were more likely to be infected with S. cohnii, S. equorum, S. saprophyticus, or S. sciuri, supporting the environmental nature of these CNS species. Three species (S. chromogenes, S. simulans, and S. xylosus) were associated with a higher quarter somatic cell count at parturition as compared with uninfected quarters.


Journal of Dairy Science | 2016

Teat apex colonization with coagulase-negative Staphylococcus species before parturition: Distribution and species-specific risk factors

A. De Visscher; Sofie Piepers; Freddy Haesebrouck; S. De Vliegher

Coagulase-negative staphylococci (CNS) are the main cause of bovine intramammary infections and are also abundantly present in extramammary habitats such as teat apices. Teat apex colonization (TAC) with CNS has already been explored in lactating dairy cows at the species level, whereas this is not true for dry cows and end-term heifers. Therefore, the aim of this observational study was to describe CNS TAC in nonlactating dairy cows and end-term heifers in Flemish dairy herds and to identify associated risk factors at the herd, cow, and quarter level. All CNS were molecularly identified to the species level using transfer RNA intergenic spacer PCR (tDNA-PCR) and sequencing of the 16S rRNA gene, allowing for species-specific statistical analyses using multivariable, multilevel logistic regression. Staphylococcus devriesei, Staphylococcus chromogenes, Staphylococcus haemolyticus, and Staphylococcus equorum were the most frequently isolated species. Staphylococcus chromogenes was the sole species colonizing teat apices of cows and heifers in all herds, whereas large between-herd differences were observed for the other species. Teat apices of red and white Holstein Friesians, of quarters dried off without an internal teat sealer, and swabbed in months with lower precipitation and higher ambient temperature were significantly more likely to be colonized by S. devriesei. Slightly dirty teat apices and teat apices swabbed in months with lower precipitation had higher odds of being colonized by S. chromogenes, whereas teat apices sampled in months with lower precipitation and higher ambient temperature were more likely to be colonized by S. haemolyticus. Dirty teat apices and teat apices swabbed in months with lower ambient temperature in combination with low precipitation had higher odds of being colonized by S. equorum. Diverse factors explaining CNS TAC, yet mostly related to humidity, ambient temperature, and hygiene, substantiate differences in epidemiological behavior and ecology between species.


Journal of Dairy Science | 2015

Technical note: A pilot study using a mouse mastitis model to study differences between bovine associated coagulase-negative staphylococci

Koen Breyne; S. De Vliegher; A. De Visscher; Sofie Piepers; Evelyne Meyer

Coagulase-negative staphylococci (CNS) are a group of bacteria classified as either minor mastitis pathogens or commensal microbiota. Recent research suggests species- and even strain-related epidemiological and genetic differences within the large CNS group. The current pilot study investigated in 2 experiments whether a mouse mastitis model validated for bovine Staphylococcus aureus can be used to explore further differences between CNS species and strains. In a first dose titration experiment, a low inoculum dose of S. aureus Newbould 305 (positive control) was compared with increasing inoculum doses of a Staphylococcus chromogenes strain originating from a chronic bovine intramammary infection to a sham-inoculated mammary glands (negative control). In contrast to the high bacterial growth following inoculation with S. aureus, S. chromogenes was retrieved in very low levels at 24 h postinduction (p.i.). In a second experiment, the inflammation inflicted by 3 CNS strains was studied in mice. The host immune response induced by the S. chromogenes intramammary strain was compared with the one induced by a Staphylococcus fleurettii strain originating from cow bedding sawdust and by a S. chromogenes strain originating from a teat apex of a heifer. As expected, at 28 and 48 h p.i., low bacterial growth and local neutrophil influx in the mammary gland were induced by all CNS strains. As hypothesized, bacterial growth p.i. was the lowest for S. fleurettii compared with that induced by the 2 S. chromogenes strains, and the overall immune response established by the 3 CNS strains was less pronounced compared with the one induced by S. aureus. Proinflammatory cytokine profiling revealed that S. aureus locally induced IL-6 and IL-1β but not TNF-α, whereas, overall, CNS-inoculated glands lacked a strong cytokine host response but also induced IL-1β locally. Compared with both other CNS strains, S. chromogenes from the teat apex inflicted a more variable IL-1β response characterized by a more intense local reaction in several mice. This pilot study suggests that an intraductal mouse model can mimic bovine CNS mastitis and has potential as a complementary in vivo tool for future CNS mastitis research. Furthermore, it indicates that epidemiologically different bovine CNS species or strains induce a differential host innate immune response in the murine mammary gland.


Journal of Dairy Science | 2012

Short communication: Identification of coagulase-negative staphylococcus species from goat milk with the API Staph identification test and with transfer RNA-intergenic spacer PCR combined with capillary electrophoresis

G. Koop; A. De Visscher; C.A. Collar; D.A.C. Bacon; Elizabeth A. Maga; James D. Murray; K. Supré; S. De Vliegher; Freddy Haesebrouck; Joan D. Rowe; M. Nielen; T. van Werven

Coagulase-negative staphylococci (CNS) are the most commonly isolated bacteria from goat milk, but they have often been identified with phenotypic methods, which may have resulted in misclassification. The aims of this paper were to assess the amount of misclassification of a phenotypic test for identifying CNS species from goat milk compared with transfer RNA intergenic spacer PCR (tDNA-PCR) followed by capillary electrophoresis, and to apply the tDNA-PCR technique on different capillary electrophoresis equipment. Milk samples were collected from 416 does in 5 Californian dairy goat herds on 3 occasions during lactation. In total, 219 CNS isolates were identified at the species level with tDNA-PCR and subjected to the API 20 Staph identification test kit (API Staph; bioMérieux, Durham, NC). If the same species was isolated multiple times from the same udder gland, only the first isolate was used for further analyses, resulting in 115 unique CNS isolates. According to the tDNA-PCR test, the most prevalent CNS species were Staphylococcus epidermidis, Staphylococcus caprae, and Staphylococcus simulans. Typeability with API staph was low (72%). Although the API Staph test was capable of identifying the majority of Staph. epidermidis and Staph. caprae isolates, sensitivity for identification of Staph. simulans was low. The true positive fraction was high for the 3 most prevalent species. It was concluded that the overall performance of API Staph in differentiating CNS species from goat milk was moderate to low, mainly because of the low typeability, and that genotypic methods such as tDNA-PCR are preferred.


Water Research | 1996

Sorption of chlorinated C1- and C2-hydrocarbons and monocyclic aromatic hydrocarbons on sea sediment

Jo Dewulf; T. Dewettinck; A. De Visscher; H. Van Langenhove

The sorption of chlorinated C1- and C2-hydrocarbons and monocyclic aromatic hydrocarbons on sea sediment was studied with a miscible displacement technique. Detection was done either by on-line UV-detection or off-line GC-analysis. Equilibrium partitioning coefficients between the salt water phase and the marine sediment were determined for 11 compounds by fitting their breakthrough curves to a local sorption equilibrium model. Based on the obtained partitioning coefficients and on the measurement of the organic carbon content of the sediment, the sorption into the organic carbon fraction was considered. Log Koc data (Koc = organic carbon-water partitioning coefficient) were calculated. A linear relationship between the log Koc values and the log Kow data (Kow = octanol-water partitioning coefficient) was found (r = 0.94, n = 11). However, the sorption was lower than expected from the log Kow data. Finally, the implications of the experimental results for the sorption behaviour of the compounds in the marine environment were evaluated. It was concluded that the sea sediment does not act as an important sink for these anthropogenic compounds.


Journal of Dairy Science | 2017

Coagulase-negative Staphylococcus species in bulk milk: Prevalence, distribution, and associated subgroup- and species-specific risk factors

A. De Visscher; Sofie Piepers; Freddy Haesebrouck; K. Supré; S. De Vliegher

Coagulase-negative staphylococci (CNS) have become the main pathogens causing bovine mastitis in recent years. A huge variation in species distribution among herds has been observed in several studies, emphasizing the need to identify subgroup- and species-specific herd-level factors to improve our understanding of the differences in ecological and epidemiological nature between species. The use of bulk milk samples enables the inclusion of a large(r) number of herds needed to identify herd-level risk factors and increases the likelihood of recovering enough isolates per species needed for conducting subgroup- and, eventually, species-specific analyses at the same time. This study aimed to describe the prevalence and distribution of CNS species in bulk milk samples and to identify associated subgroup- and species-specific herd-level factors. Ninety percent of all bulk milk samples yielded CNS. Staphylococcus equorum was the predominant species, followed by Staphylococcus haemolyticus and Staphylococcus epidermidis. A seasonal effect was observed for several CNS species. Bulk milk samples from herds with a loose-pack or a tiestall housing system were more likely to yield CNS species compared with herds with a freestall barn, except for S. epidermidis, Staphylococcus simulans, and Staphylococcus cohnii. In September, herds in which udders were clipped had lower odds of yielding Staphylococcus chromogenes, S. simulans, and Staphylococcus xylosus, the CNS species assumed to be most relevant for udder health, in their bulk milk than herds in which udder clipping was not practiced. Bulk milk of herds participating in a monthly veterinary udder health-monitoring program was more likely to yield these 3 CNS species. Herds always receiving their milk quality premium or predisinfecting teats before attachment of the milking cluster had lower odds of having S. equorum in their bulk milk. Herds not using a single dry cotton or paper towel for each cow during premilking udder preparation were more likely to have S. cohnii-positive bulk milk. Herds in which flushing with hot water or steam of the milking cluster after having milked a cow with a (sub)clinical mastitis was applied, were less likely to yield S. simulans, S. haemolyticus, and S. cohnii in their bulk milk. Always wearing gloves during milking decreased the odds of having Staphylococcus devriesei-positive bulk milk. Tap water from the public drinking system used as drinking water increased the odds of yielding S. simulans in the bulk milk. In conclusion, CNS are highly prevalent in bulk milk and might originate from the environment for some species (we hypothesize this is true for S. equorum or S. cohnii), or from within the udder (e.g., for S. simulans). Studies collecting bulk milk and quarter milk samples at the same time along with environmental samples are needed to determine the exact origin of the different (subgroups of) CNS species present in bulk milk using strain-typing techniques.

Collaboration


Dive into the A. De Visscher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge