Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Di Zenobio is active.

Publication


Featured researches published by A. Di Zenobio.


Superconductor Science and Technology | 2003

High performance new MgB2 superconducting hollow wires

G Giunchi; S Ceresara; G Ripamonti; A. Di Zenobio; S Rossi; S. Chiarelli; M. Spadoni; Rainer Wesche; Pierluigi Bruzzone

MgB2 hollow wires have been produced with a new technique which uses a conventional wire manufacturing process but is applied to composite billets containing the elemental B and Mg precursors in an appropriate shape. The technique has been applied to the manufacture of both monofilamentary and multifilamentary wires of several tens meters length. The superconducting transport properties of the MgB2 hollow wires have been measured in magnetic field and in the temperature range from 4.2 to 30 K. Promising results are obtained, which indicate the possibility of application of these wires as superconductors in the temperature range of 15-30 K and at medium-high values of magnetic field.MgB2 hollow wires have been produced with a new technique which uses a conventional wire manufacturing process but is applied to composite billets containing the elemental B and Mg precursors in an appropriate shape. The technique has been applied to the manufacture of both monofilamentary and multifilamentary wires of several tens of metres in length. The superconducting transport properties of the MgB2 hollow wires have been measured in a magnetic field and in the temperature range from 4.2 to 30 K. Promising results are obtained, which indicate the possibility of the application of these wires as superconductors in the temperature range of 15–30 K and at medium-high values of magnetic field.


IEEE Transactions on Applied Superconductivity | 2008

Test Results of Two European ITER TF Conductor Samples in SULTAN

Pierluigi Bruzzone; M. Bagnasco; Marco Calvi; Francesca Cau; D. Ciazynski; A. della Corte; A. Di Zenobio; L. Muzzi; Arend Nijhuis; E. Salpietro; L. Savoldi Richard; S. Turtu; A. Vostner; Rainer Wesche; Roberto Zanino

Four conductor lengths were prepared according to the ITER TF conductor design and assembled into two SULTAN samples. The four lengths are not fully identical, with variations of the strand supplier, void fraction and twist pitch. Lower void fractions improve the strand support and increased twist pitches also lower the strand contact pressure but both tend to increase the AC loss and the lower void fraction also increases the pressure drop so that the mass flow rate in the strand bundle area of the cable is reduced. The assembly procedure of the two samples is described including the destructive investigation on a short conductor section to assess a possible perturbation of the cable-to-jacket slippage during the termination preparation. Based on the DC performance and AC loss results from the test in SULTAN, the impact of the void fraction and twist pitch variations is discussed in view of freezing the ITER conductor design and large series manufacture. A comparison with the former generation of conductors, using similar strands but based on the ITER Model Coil layout, is also carried out. The ITER specifications, in terms of current sharing temperature, are fulfilled by both samples, with outstanding results for the conductor with longer twist pitches.


IEEE Transactions on Applied Superconductivity | 2010

Design of the JT-60SA Superconducting Toroidal Field Magnet

V. Tomarchio; P. Barabaschi; A. Cucchiaro; P. Decool; A. della Corte; A. Di Zenobio; D. Duglue; L. Meunier; L. Muzzi; M. Nannini; M. Peyrot; G. Phillips; A. Pizzuto; C. Portafaix; L. Reccia; K. Yoshida; L. Zani

The JT-60SA is a fusion experiment designed to contribute to the early realization of fusion energy, by providing support to the operation of ITER, by addressing key physics issues for ITER and DEMO and by investigating how best to optimize the operation of the next fusion power plants that will be built after ITER. It is a combined project of the JA-EU Satellite Tokamak Program under the Broader Approach (BA) Program and JAEAs Program for National Use, and it is to be built in Naka, Japan, using the infrastructure of the existing JT-60U experiment. This paper describes in detail the design of the JT-60SA Toroidal Field magnet and shows the strong points of each foreseen solution. Additional information about manufacturing procedures is given and technological issues are reported and critically analysed.


IEEE Transactions on Applied Superconductivity | 2007

Test Results of Two ITER TF Conductor Short Samples Using High Current Density Nb

Pierluigi Bruzzone; M. Bagnasco; D. Ciazynski; A. della Corte; A. Di Zenobio; R. Herzog; Y. Ilyin; B. Lacroix; L. Muzzi; Arend Nijhuis; B. Renard; E. Salpietro; Laura Savoldi Richard; Boris Stepanov; S. Turtu; A. Vostner; Rainer Wesche; L. Zani; Roberto Zanino

Two short length samples have been prepared and tested in SULTAN to benchmark the performance of high current density, advanced Nb3Sn strands in the large cable-in-conduit conductors (CICC) for ITER. The cable pattern and jacket layout were identical to the toroidal field model coil conductor (TFMC), tested in 1999. The four conductor sections used strands from OST, EAS, OKSC and OCSI respectively. The Cu:non-Cu ratio was 1 for three of the new strands, compared to 1.5 in the TFMC strand. The conductors with OST and OKSC strands had one Cu wire for two Nb3Sn strands, as in TFMC. In the EAS and OCSI conductors, all the 1080 strands in the cable were Nb3Sn. A dc test under relevant load conditions and a thermal-hydraulic campaign was carried out in SULTAN. The CICC performance was strongly degraded compared to the strand for all the four conductors. The current sharing temperature at the ITER TF operating conditions (jop = 286 A/mm2, B = 11.15 T) was lower than requested by ITER.


IEEE Transactions on Applied Superconductivity | 2008

_{3}

K. Yoshida; K. Kizu; Kunihiko Tsuchiya; H. Tamai; Makoto Matsukawa; M. Kikuchi; A. della Corte; L. Muzzi; S. Turtu; A. Di Zenobio; A. Pizzuto; C. Portafaix; S. Nicollet; B. Lacroix; P. Decool; J.L. Duchateau; L. Zani

The upgrade of JT-60U magnet system to superconducting coils (JT-60SA) has been decided by both parties of Japanese government (JA) and European commission (EU) in the framework of the Broader Approach (BA) agreement. The magnet system for JT-60SA consists of 18 toroidal field (TF) coils, a Central Solenoid (CS) with four modules, seven Equilibrium Field (EF) coils. The TF case encloses the winding pack and is the main structural component of the magnet system. The CS consists of independent winding pack modules, which is hung from the top of the TF coils through its pre-load structure. The seven EF coils are attached to the TF coil cases through supports which include flexible plates allowing radial displacements. The CS modules operate at high field and use Nb3 Sn type superconductor. The TF coils and EF coils use NbTi superconductor. The magnet system has a large heat load from nuclear heating from DD fusion and large AC loss. This paper describes the technical requirements, the operational interface and the outline of conceptual design of the superconducting magnet system for JT-60SA.


IEEE Transactions on Applied Superconductivity | 2008

Sn Strands

A. Portone; W. Baker; E. Salpietro; A. Vostner; Pierluigi Bruzzone; Francesca Cau; A. della Corte; A. Di Zenobio; Eckhard Theisen; A. Baldini; Pietro Testoni; J. Lucas; M. Pinilla; G. Samuelli

A 12.5 T superconducting dipole magnet (European DIPOle, EDIPO) has been designed by EFDA and it is now being procured within the framework of the European Fusion Programme in order to be installed in CRPP-PSI. This saddle-shaped magnet is designed to reach 12.5 T in a 100 times 150 mm rectangular bore over a length of about 1.5 m in order to test full size conductor samples that shall be produced during the ITER magnets procurement. The magnet uses Cable In Conduit Conductor (CICC) technology and the cables are made of high Jc (about 2300 A/mm2 at 4.2 K, 12 T) superconducting strands. In this paper the main magnet parameters are given together with the key supporting electromagnetic, mechanical and thermal analyses. An update on the general status of the procurement of the strand, conductors, dipole magnet and facility is also given together with the key results of the on-going supporting R&D.


IEEE Transactions on Applied Superconductivity | 2010

Conceptual Design of Superconducting Magnet System for JT-60SA

L. Muzzi; Valentina Corato; G. De Marzi; A. Di Zenobio; C. Fiamozzi Zignani; L. Reccia; S. Turtu; A. della Corte; P. Barabaschi; M. Peyrot; Pierluigi Bruzzone; Boris Stepanov

In the framework of the JT-60SA design activities, EU home team has defined a reference layout for the Toroidal Field conductor: it is a slightly rectangular Cable-In-Conduit NbTi conductor, operating at 25.7 kA with a peak field of 5.65 T. ENEA has assigned LUVATA Fornaci di Barga the task to produce the strands and to perform cabling, whereas jacketing and compaction have been carried out in its own labs. The sample, successfully tested at the CRPP SULTAN facility, has been assembled in such a way as to avoid the bottom joint between the two legs, thus using a single conductor length (about 7 m). An ad-hoc developed solution to restrain the U-bent conductor section (where jacket is not present), consisting in a stainless steel He-leak tight box with an inner structure designed in order to completely block the cable, has been also developed and manufactured by ENEA, where the sample has been also assembled. Instrumentation installation and final assembly of the sample have been performed by the SULTAN team. The main aspects of the sample manufacturing and characterization are here presented and discussed.


IEEE Transactions on Applied Superconductivity | 2008

Design and Procurement of the European Dipole (EDIPO) Superconducting Magnet

K. Kizu; Kunihiko Tsuchiya; K. Yoshida; M. Edaya; T. Ichige; H. Tamai; Makoto Matsukawa; A. della Corte; A. Di Zenobio; L. Muzzi; S. Turtu; J.L. Duchateau; L. Zani

The conductor for central solenoid (CS) and equilibrium field (EF) coils of JT-60 Super Advanced (JT-60SA) were designed. The conductor for CS is Nb3Sn Cable-In-Conduit (CIC) conductor with JK2LB jacket. EF coil conductors are NbTi CIC conductor with SS316LN jacket. The field change rate (3.9 T/s), faster than ITER generates the large AC loss in conductor. The analyses of current sharing temperature (Tcs)margins for these coils were performed by the one-dimensional fluid analysis code with transient heat loads. The margins of these coils are 1 K for the plasma standard and disruption scenarios. The minimum Tcs margin of CS conductor is 1.2 K at plasma break down (BD). The margin is increased by decreasing the rate of initial magnetization. It is found that the disruption mainly impacts the outer low field EF coil. The disruption decreases the Tcs margin of the coil by >1 K. A coupling time constant of <100 ms, Ni plating, and a central spiral are required for NbTi conductor.


IEEE Transactions on Applied Superconductivity | 2008

The JT-60SA Toroidal Field Conductor Reference Sample: Manufacturing and Test Results

A. Pizzuto; L. Semeraro; L. Zani; P. Bayetti; A. Cucchiaro; P. Decool; A. della Corte; A. Di Zenobio; N. Dolgetta; J.L. Duchateau; Walter H. Fietz; R. Heller; P. Hertout; M. Kikuchi; K. Kizu; B. Lacroix; L. Muzzi; S. Nicollet; G.M. Polli; C. Portafaix; L. Reccia; S. Turtu; J.-M. Verger; R. Villari; K. Yoshida

The broader approach agreement between Europe and Japan includes the construction of a fully superconducting tokamak, the JT-60 Super Advanced (JT-60SA), as a satellite experiment to ITER. In particular, the whole Toroidal Field magnet system, described in this paper, will be provided to Japan by the EU. All the TF coil main constituents, i.e. conductor, winding pack, joints, casing, current leads, are here presented and discussed as well as the design criteria adopted to fulfil the machine requirements. The results of the analyses performed by the EU and JA to define and assess the TF magnet system conceptual design are reported and commented. Future work plan is also discussed.


Superconductor Science and Technology | 2010

Conductor Design of CS and EF Coils for JT-60SA

A. della Corte; V. Corato; A. Di Zenobio; C. Fiamozzi Zignani; L. Muzzi; G M Polli; L. Reccia; S. Turtu; Pierluigi Bruzzone; E. Salpietro; A. Vostner

One of the design features which yet offers interesting margins for performance optimization of cable-in-conduit conductors (CICCs), is their geometry. For relatively small size Nb3Sn CICCs, operating at high electromagnetic pressure, such as those for the EDIPO project, it has been experimentally shown that a design based on a rectangular layout with higher aspect ratio leads to the best performance, especially in terms of degradation with electromagnetic loads. To extend this analysis to larger size Nb3Sn CICCs, we manufactured and tested, in the SULTAN facility, an ITER toroidal field (TF) cable, inserted into a thick stainless steel tube and then compacted to a high aspect ratio rectangular shape. Besides establishing a new record in Nb3Sn CICC performances for ITER TF type cables, the very good test results confirmed that the conductor properties improve not only by lowering the void fraction and raising the cable twist pitch, as already shown during the ITER TFPRO and the EDIPO test campaigns, but also by the proper optimization of the conductor shape with respect to the electromagnetic force distribution. The sample manufacturing steps, along with the main test results, are presented here.

Collaboration


Dive into the A. Di Zenobio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierluigi Bruzzone

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge