A. Diercke
Slovak Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Diercke.
Astronomische Nachrichten | 2015
A. Diercke; Rainer Arlt; Carsten J. Denker
Most of our knowledge about the Suns activity cycle arises from sunspot observations over the last centuries since telescopes have been used for astronomy. The German astronomer Gustav Sporer observed almost daily the Sun from 1861 until the beginning of 1894 and assembled a 33-year collection of sunspot data covering a total of 445 solar rotation periods. These sunspot drawings were carefully placed on an equidistant grid of heliographic longitude and latitude for each rotation period, which were then copied to copper plates for a lithographic reproduction of the drawings in astronomical journals. In this article, we describe in detail the process of capturing these data as digital images, correcting for various effects of the aging print materials, and preparing the data for contemporary scientific analysis based on advanced image processing techniques. With the processed data we create a butterfly diagram aggregating sunspot areas, and we present methods to measure the size of sunspots (umbra and penumbra) and to determine tilt angles of active regions. A probability density function of the sunspot area is computed, which conforms to contemporary data after rescaling.
Astronomische Nachrichten | 2016
S. J. González Manrique; C. Kuckein; A. Pastor Yabar; M. Collados; C. Denker; C. E. Fischer; Peter Gomory; A. Diercke; N. Bello González; R. Schlichenmaier; H. Balthasar; T. Berkefeld; A. Feller; S. Hoch; A. Hofmann; F. Kneer; A. Lagg; H. Nicklas; D. Orozco Suárez; D. Schmidt; W. Schmidt; M. Sigwarth; M. Sobotka; S. K. Solanki; Dirk Soltau; J. Staude; Klaus G. Strassmeier; M. Verma; R. Volkmer; O. von der Lühe
The new generation of solar instruments provides better spectral, spatial, and temporal resolution for a better understanding of the physical processes that take place on the Sun. Multiple-component profiles are more commonly observed with these instruments. Particularly, the He I 10830 A triplet presents such peculiar spectral profiles, which give information on the velocity and magnetic fine structure of the upper chromosphere. The purpose of this investigation is to describe a technique to efficiently fit the two blended components of the He I 10830 A triplet, which are commonly observed when two atmospheric components are located within the same resolution element. The observations used in this study were taken on 2015 April 17 with the very fast spectroscopic mode of the GREGOR Infrared Spectrograph (GRIS) attached to the 1.5-meter GREGOR solar telescope, located at the Observatorio del Teide, Tenerife, Spain. We apply a double-Lorentzian fitting technique using Levenberg-Marquardt least-squares minimization. This technique is very simple and much faster than inversion codes. Line-of-sight Doppler velocities can be inferred for a whole map of pixels within just a few minutes. Our results show sub- and supersonic downflow velocities of up to 32 km/s for the fast component in the vicinity of footpoints of filamentary structures. The slow component presents velocities close to rest.
Astronomy and Astrophysics | 2016
M. Verma; C. Denker; H. Balthasar; C. Kuckein; S. J. González Manrique; M. Sobotka; N. Bello González; S. Hoch; A. Diercke; P. Kummerow; T. Berkefeld; M. Collados; A. Feller; A. Hofmann; F. Kneer; A. Lagg; J. Löhner-Böttcher; H. Nicklas; A. Pastor Yabar; R. Schlichenmaier; D. Schmidt; W. Schmidt; Matthias Schubert; M. Sigwarth; S. K. Solanki; Dirk Soltau; J. Staude; Klaus G. Strassmeier; R. Volkmer; O. von der Lühe
Aims. Combining high-resolution and synoptic observations aims to provide a comprehensive description of flux emergence at photospheric level and of the growth process that eventually leads to a mature active region. Methods. Small active region NOAA 12118 was observed on 2014 July 18 with the 1.5-meter GREGOR solar telescope on 2014 July 18. High-resolution time-series of blue continuum and G-band images acquired in the blue imaging channel (BIC) of the GREGOR Fabry-Perot Interferometer (GFPI) were complemented by LOS magnetograms and continuum images obtained with the HMI onboard the SDO. Horizontal proper motions and horizontal plasma velocities were computed with local correlation tracking (LCT) and the differential affine velocity estimator, respectively. Morphological image processing was employed to measure the photometric/magnetic area, magnetic flux, and the separation profile of the EFR during its evolution. Results. The computed growth rates for photometric area, magnetic area, and magnetic flux are about twice as high as the respective decay rates. The space-time diagram using HMI magnetograms of five days traces a leaf-like structure, which is determined by the initial separation of the two polarities, a rapid expansion phase, a time when the spread stalls, and a period when the region slowly shrinks again. The separation rate of 0.26 kms is highest in the initial stage, and it decreases when the separation comes to a halt. Horizontal plasma velocities computed at four evolutionary stages indicate a changing pattern of inflows. In LCT maps we find persistent flow patterns such as outward motions in the outer part of the two major pores, a diverging feature near the trailing pore marking the site of upwelling plasma and flux emergence, and low velocities in the interior of pores. We detected many elongated rapidly expanding granules between the two major polarities.
arXiv: Instrumentation and Methods for Astrophysics | 2016
C. Kuckein; C. Denker; M. Verma; H. Balthasar; S. J. González Manrique; Rohan E. Louis; A. Diercke
A huge amount of data has been acquired with the GREGOR Fabry-Perot Interferometer (GFPI), large-format facility cameras, and since 2016 with the High-resolution Fast Imager (HiFI). These data are processed in standardized procedures with the aim of providing science-ready data for the solar physics community. For this purpose, we have developed a user-friendly data reduction pipeline called sTools based on the Interactive Data Language (IDL) and licensed under creative commons license. The pipeline delivers reduced and image-reconstructed data with a minimum of user interaction. Furthermore, quick-look data are generated as well as a webpage with an overview of the observations and their statistics. All the processed data are stored online at the GREGOR GFPI and HiFI data archive of the Leibniz Institute for Astrophysics Potsdam (AIP). The principles of the pipeline are presented together with selected high-resolution spectral scans and images processed with sTools.
Astrophysical Journal Supplement Series | 2018
Carsten J. Denker; C. Kuckein; M. Verma; Sergio J. González Manrique; A. Diercke; Harry Enke; Jochen Klar; H. Balthasar; Rohan E. Louis; Ekaterina Dineva
In high-resolution solar physics, the volume and complexity of photometric, spectroscopic, and polarimetric ground-based data significantly increased in the last decade reaching data acquisition rates of terabytes per hour. This is driven by the desire to capture fast processes on the Sun and by the necessity for short exposure times freezing the atmospheric seeing, thus enabling post-facto image restoration. Consequently, large-format and high-cadence detectors are nowadays used in solar observations to facilitate image restoration. Based on our experience during the early science phase with the 1.5-meter GREGOR solar telescope (2014-2015) and the subsequent transition to routine observations in 2016, we describe data collection and data management tailored towards image restoration and imaging spectroscopy. We outline our approaches regarding data processing, analysis, and archiving for two of GREGORs post-focus instruments (see this http URL), i.e., the GREGOR Fabry-Perot Interferometer (GFPI) and the newly installed High-Resolution Fast Imager (HiFI). The heterogeneous and complex nature of multi-dimensional data arising from high-resolution solar observations provides an intriguing but also a challenging example for big data in astronomy. The big data challenge has two aspects: (1) establishing a workflow for publishing the data for the whole community and beyond and (2) creating a Collaborative Research Environment (CRE), where computationally intense data and post-processing tools are co-located and collaborative work is enabled for scientists of multiple institutes. This requires either collaboration with a data center or frameworks and databases capable of dealing with huge data sets based on Virtual Observatory (VO) and other community standards and procedures.
Astronomy and Astrophysics | 2018
M. Verma; C. Denker; H. Balthasar; C. Kuckein; R. Rezaei; M. Sobotka; N. Deng; H. Wang; A. Tritschler; M. Collados; A. Diercke; S. J. González Manrique
Combining high-resolution spectropolarimetric and imaging data is key to understanding the decay process of sunspots as it allows us scrutinizing the velocity and magnetic fields of sunspots and their surroundings. Active region NOAA 12597 was observed on 24/09/2016 with the 1.5-m GREGOR solar telescope using high-spatial resolution imaging as well as imaging spectroscopy and near-infrared (NIR) spectropolarimetry. Horizontal proper motions were estimated with LCT, whereas LOS velocities were computed with spectral line fitting methods. The magnetic field properties were inferred with the SIR code for the Si I and Ca I NIR lines. At the time of the GREGOR observations, the leading sunspot had two light-bridges indicating the onset of its decay. One of the light-bridges disappeared, and an elongated, dark umbral core at its edge appeared in a decaying penumbral sector facing the newly emerging flux. The flow and magnetic field properties of this penumbral sector exhibited weak Evershed flow, moat flow, and horizontal magnetic field. The penumbral gap adjacent to the elongated umbral core and the penumbra in that penumbral sector displayed LOS velocities similar to granulation. The separating polarities of a new flux system interacted with the leading and central part of the already established active region. As a consequence, the leading spot rotated 55-degree in clockwise direction over 12 hours. In the high-resolution observations of a decaying sunspot, the penumbral filaments facing flux emergence site contained a darkened area resembling an umbral core filled with umbral dots. This umbral core had velocity and magnetic field properties similar to the sunspot umbra. This implies that the horizontal magnetic fields in the decaying penumbra became vertical as observed in flare-induced rapid penumbral decay, but on a very different time-scale.
Astronomische Nachrichten | 2016
C. Denker; C. Heibel; J. Rendtel; K. Arlt; H. Balthasar; A. Diercke; S. J. González Manrique; A. Hofmann; C. Kuckein; H. Önel; V. Senthamizh Pavai; J. Staude; M. Verma
The solar observatory Einstein Tower (Einsteinturm) at the Telegrafenberg in Potsdam is both a landmark of modern architecture and an important place for solar physics. Originally built for high-resolution spectroscopy and measuring the gravitational redshift, research shifted over the years to understanding the active Sun and its magnetic field. Nowadays, telescope and spectrographs are used for research and development, i.e., testing instruments and in particular polarization optics for advanced instrumentation deployed at major European and international astronomical and solar telescopes. In addition, the Einstein Tower is used for educating and training of the next generation astrophysicists as well as for education and public outreach activities directed at the general public. This article comments on the observatorys unique architecture and the challenges of maintaining and conserving the building. It describes in detail the characteristics of telescope, spectrographs, and imagers; it portrays some of the research and development activities.
arXiv: Solar and Stellar Astrophysics | 2012
A. Diercke; Rainer Arlt; Carsten Denker
Much of our knowledge about the solar dynamo is based on sunspot observations. It is thus desirable to extend the set of positional and morphological data of sunspots into the past. Gustav Sporer observed in Germany from Anklam (1861-1873) and Potsdam (1874-1894). He left detailed prints of sunspot groups, which we digitized and processed to mitigate artifacts left in the print by the passage of time. After careful geometrical correction, the sunspot data are now available as synoptic charts for almost 450 solar rotation periods. Individual sunspot positions can thus be precisely determined and spot areas can be accurately measured using morphological image processing techniques. These methods also allow us to determine tilt angles of active regions (Joys law) and to assess the complexity of an active region.
Solar Physics | 2018
C. Denker; E. Dineva; H. Balthasar; M. Verma; C. Kuckein; A. Diercke; S.J. González Manrique
Broad-band imaging and even imaging with a moderate bandpass (about 1xa0nm) provides a photon-rich environment, where frame selection (lucky imaging) becomes a helpful tool in image restoration, allowing us to perform a cost-benefit analysis on how to design observing sequences for imaging with high spatial resolution in combination with real-time correction provided by an adaptive optics (AO) system. This study presents high-cadence (160xa0Hz) G-band and blue continuum image sequences obtained with the High-resolution Fast Imager (HiFI) at the 1.5-meter GREGOR solar telescope, where the speckle-masking technique is used to restore images with nearly diffraction-limited resolution. The HiFI employs two synchronized large-format and high-cadence sCMOS detectors. The median filter gradient similarity (MFGS) image-quality metric is applied, among others, to AO-corrected image sequences of a pore and a small sunspot observed on 2017 Junexa04 andxa05. A small region of interest, which was selected for fast-imaging performance, covered these contrast-rich features and their neighborhood, which were part of Active Region NOAAxa012661. Modifications of the MFGS algorithm uncover the field- and structure-dependency of this image-quality metric. However, MFGS still remains a good choice for determining image quality without a priori knowledge, which is an important characteristic when classifying the huge number of high-resolution images contained in data archives. In addition, this investigation demonstrates that a fast cadence and millisecond exposure times are still insufficient to reach the coherence time of daytime seeing. Nonetheless, the analysis shows that data acquisition rates exceeding 50xa0Hz are required to capture a substantial fraction of the best seeing moments, significantly boosting the performance of post-facto image restoration.
Astronomy and Astrophysics | 2018
S. J. González Manrique; C. Kuckein; M. Collados; C. Denker; S. K. Solanki; Peter Gomory; M. Verma; H. Balthasar; A. Lagg; A. Diercke
We study the evolution of an arch filament system (AFS) and of its individual arch filaments to learn about the processes occurring in them. We observed the AFS at the GREGOR solar telescope on Tenerife at high cadence with the very fast spectroscopic mode of the GREGOR Infrared Spectrograph (GRIS) in the He I 10830 A spectral range. The He I triplet profiles were fitted with analytic functions to infer line-of-sight (LOS) velocities to follow plasma motions within the AFS. We tracked the temporal evolution of an individual arch filament over its entire lifetime, as seen in the He I 10830 A triplet. The arch filament expanded in height and extended in length from 13 to 21. The lifetime of this arch filament is about 30 min. About 11 min after the arch filament is seen in He I, the loop top starts to rise with an average Doppler velocity of 6 km/s. Only two minutes later, plasma drains down with supersonic velocities towards the footpoints reaching a peak velocity of up to 40 km/s in the chromosphere. The temporal evolution of He I 10830 A profiles near the leading pore showed almost ubiquitous dual red components of the He I triplet, indicating strong downflows, along with material nearly at rest within the same resolution element during the whole observing time. We followed the arch filament as it carried plasma during its rise from the photosphere to the corona. The material then drained toward the photosphere, reaching supersonic velocities, along the legs of the arch filament. Our observational results support theoretical AFS models and aids in improving future models.