Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Duarte-Cabral is active.

Publication


Featured researches published by A. Duarte-Cabral.


Monthly Notices of the Royal Astronomical Society | 2010

The JCMT Legacy Survey of the Gould Belt: a first look at Orion B with HARP

J. Buckle; Emily I. Curtis; J. F. Roberts; G. J. White; J. Hatchell; Christopher M. Brunt; Harold M. Butner; B. Cavanagh; A. Chrysostomou; Christopher J. Davis; A. Duarte-Cabral; Mireya Etxaluze; J. Di Francesco; Per Friberg; R. K. Friesen; G. A. Fuller; S. Graves; J. S. Greaves; M. R. Hogerheijde; D. Johnstone; Brenda C. Matthews; H. E. Matthews; D. Nutter; J. M. C. Rawlings; J. S. Richer; S. Sadavoy; Robert J. Simpson; N. F. H. Tothill; Y. G. Tsamis; Serena Viti

The Gould Belt Legacy Survey will survey nearby star-forming regions (within 500 pc), using HARP (Heterodyne Array Receiver Programme), SCUBA-2 (Submillimetre CommonUser Bolometer Array 2) and POL-2 (Polarimeter 2) on the James Clerk Maxwell Telescope (JCMT). This paper describes the initial data obtained using HARP to observe 12 CO, 13 CO and C 18 O J = 3! 2 towards two regions in Orion B, NGC 2024 and NGC 2071. We describe the physical characteristics of the two clouds, calculating temperatures and opacities utilizing all three isotopologues. We find good agreement between temperatures calculated from CO and from dust emission in the dense, energetic regions. We determine the mass and energetics of the clouds, and of the high-velocity material seen in 12 CO emission, and compare the relative energetics of the high- and low-velocity material in the two clouds. We present a CLUMPFIND analysis of the 13 CO condensations. The slope of the condensation mass functions, at the high-mass ends, is similar to the slope of the initial mass function.


Monthly Notices of the Royal Astronomical Society | 2015

The JCMT Gould Belt Survey: first results from the SCUBA-2 observations of the Ophiuchus molecular cloud and a virial analysis of its prestellar core population

K. Pattle; Derek Ward-Thompson; Jason Matthew Kirk; G. J. White; Emily Drabek-Maunder; J. V. Buckle; S. F. Beaulieu; David Berry; H. Broekhoven-Fiene; M. J. Currie; M. Fich; J. Hatchell; Helen Kirk; T. Jenness; D. Johnstone; J. C. Mottram; D. Nutter; Jaime E. Pineda; C. Quinn; C. Salji; S. Tisi; S. Walker-Smith; J. Di Francesco; M. R. Hogerheijde; P. André; Pierre Bastien; D. Bresnahan; Harold M. Butner; M. Chen; A. Chrysostomou

In this paper, we present the first observations of the Ophiuchus molecular cloud performed as part of the James Clerk Maxwell Telescope (JCMT) Gould Belt Survey (GBS) with the SCUBA-2 instrument. We demonstrate methods for combining these data with previous HARP CO, Herschel, and IRAM N2H+ observations in order to accurately quantify the properties of the SCUBA-2 sources in Ophiuchus. We produce a catalogue of all of the sources found by SCUBA-2. We separate these into protostars and starless cores. We list all of the starless cores and perform a full virial analysis, including external pressure. This is the first time that external pressure has been included in this level of detail. We find that the majority of our cores are either bound or virialized. Gravitational energy and external pressure are on average of a similar order of magnitude, but with some variation from region to region. We find that cores in the Oph A region are gravitationally bound prestellar cores, while cores in the Oph C and E regions are pressure-confined. We determine that N2H+ is a good tracer of the bound material of prestellar cores, although we find some evidence for N2H+ freeze-out at the very highest core densities. We find that non-thermal linewidths decrease substantially between the gas traced by C18O and that traced by N2H+, indicating the dissipation of turbulence at higher densities. We find that the critical Bonnor–Ebert stability criterion is not a good indicator of the boundedness of our cores. We detect the pre-brown dwarf candidate Oph B-11 and find a flux density and mass consistent with previous work. We discuss regional variations in the nature of the cores and find further support for our previous hypothesis of a global evolutionary gradient across the cloud from south-west to north-east, indicating sequential star formation across the region.


Monthly Notices of the Royal Astronomical Society | 2015

The frequency and nature of 'cloud-cloud collisions' in galaxies

Clare L. Dobbs; J. E. Pringle; A. Duarte-Cabral

We investigate cloud–cloud collisions and giant molecular cloud evolution in hydrodynamic simulations of isolated galaxies. The simulations include heating and cooling of the interstellar medium (ISM), self-gravity and stellar feedback. Over time-scales <5 Myr most clouds undergo no change, and mergers and splits are found to be typically two-body processes, but evolution over longer time-scales is more complex and involves a greater fraction of intercloud material. We find that mergers or collisions occur every 8–10 Myr (1/15th of an orbit) in a simulation with spiral arms, and once every 28 Myr (1/5th of an orbit) with no imposed spiral arms. Both figures are higher than expected from analytic estimates, as clouds are not uniformly distributed in the galaxy. Thus, clouds can be expected to undergo between zero and a few collisions over their lifetime. We present specific examples of cloud–cloud interactions in our results, including synthetic CO maps. We would expect cloud–cloud interactions to be observable, but find they appear to have little or no impact on the ISM. Due to a combination of the clouds’ typical geometries, and moderate velocity dispersions, cloud–cloud interactions often better resemble a smaller cloud nudging a larger cloud. Our findings are consistent with the view that spiral arms make little difference to overall star formation rates in galaxies, and we see no evidence that collisions likely produce massive clusters. However, to confirm the outcome of such massive cloud collisions we ideally need higher resolution simulations.


Astronomy and Astrophysics | 2014

The W43-MM1 mini-starburst ridge, a test for star formation efficiency models

F. Louvet; F. Motte; Patrick Hennebelle; A. Maury; Ian A. Bonnell; Sylvain Bontemps; A. Gusdorf; T. Hill; F. Gueth; Nicolas Peretto; A. Duarte-Cabral; G. Stephan; P. Schilke; T. Csengeri; Q. Nguyen Luong; Dariusz C. Lis

Context. Star formation e ciency (SFE) theories are currently based on statistical distributions of turbulent cloud structures and a simple model of star formation from cores. They remain poorly tested, especially at the highest densities. Aims. We investigate the e ects of gas density on the SFE through measurements of the core formation e ciency (CFE). With a total mass of 2 10 4 M , the W43-MM1 ridge is one of the most convincing candidate precursors of Galactic starburst clusters and thus one of the best places to investigate star formation. Methods. We used high-angular resolution maps obtained at 3 mm and 1 mm within the W43-MM1 ridge with the IRAM Plateau de Bure Interferometer to reveal a cluster of 11 massive dense cores, and, one of the most massive protostellar cores known. A Herschel column density image provided the mass distribution of the cloud gas. We then measured the “instantaneous” CFE and estimated the SFE and the star formation rate (SFR) within subregions of the W43-MM1 ridge. Results. The high SFE found in the ridge ( 6% enclosed in 8 pc 3 ) confirms its ability to form a starburst cluster. There is, however, a clear lack of dense cores in the eastern part of the ridge, which may be currently assembling. The CFE and the SFE are observed to increase with volume gas density, while the SFR per free fall time steeply decreases with the virial parameter, vir. Statistical models of the SFR may describe the outskirts of the W43-MM1 ridge well, but struggle to reproduce its inner part, which corresponds to measurements at low vir. It may be that ridges do not follow the log-normal density distribution, Larson relations, and stationary conditions forced in the statistical SFR models.


Astronomy and Astrophysics | 2011

Was a cloud-cloud collision the trigger of the recent star formation in Serpens?

A. Duarte-Cabral; Clare L. Dobbs; Nicolas Peretto; G. A. Fuller

Context. The complexity of the interstellar medium (ISM) is such that it is unlikely that star formation is initiated in the same way in all molecular clouds. While some clouds seem to collapse on their own, others may be triggered by an external event such as a cloud/flow collision forming a gravitationally unstable enhanced density layer. Aims. This work tests cloud-cloud collisions as the triggering mechanism for star formation in the Serpens Main Cluster as has been suggested by previous work. Methods. A set of smoothed particle hydrodynamics (SPH) simulations of the collision between two cylindrical clouds are performed and compared to (sub)millimetre observations of the Serpens Main Cluster. Results. A configuration was found that reproduces many of the observed characteristics of Serpens, including some of the main features of the peculiar velocity field. The evolution of the velocity with position throughout the model is similar to the observed one and the column density and masses within the modelled cloud agree with those measured for the SE sub-cluster. Furthermore, our results also show that an asymmetric collision provides the ingredients to reproduce lower density filaments perpendicular to the main structure, similar to those observed. In this scenario, the formation of the NW sub-cluster of Serpens can be reproduced only if there is a pre-existing marginally gravitationally unstable region at the time the collision occurs. Conclusions. This work supports the interpretation that a collision between two clouds may have been the trigger of the most recent burst of star formation in Serpens. It not only explains the complicated velocity structure seen in the region, but also the temperature differences between the north (in “isolated” collapse) and the south (resulting from the shock between the clouds). In addition it provides an explanation for the sources in the south having a larger spread in age than those in the north.


Monthly Notices of the Royal Astronomical Society | 2010

The JCMT Legacy Survey of the Gould Belt: a first look at Serpens with HARP: GBS: first look at Serpens

S. Graves; J. S. Richer; J. V. Buckle; A. Duarte-Cabral; G. A. Fuller; M. R. Hogerheijde; J. E. Owen; Christopher M. Brunt; Harold Martin Butner; B. Cavanagh; A. Chrysostomou; Emily I. Curtis; C. J. Davis; Mireya Etxaluze; J. Di Francesco; Per Friberg; Rachel Katherine Friesen; J. S. Greaves; J. Hatchell; D. Johnstone; Brenda C. Matthews; Henry E. Matthews; Christopher D. Matzner; D. Nutter; J. M. C. Rawlings; Joe Roberts; S. Sadavoy; Robert J. Simpson; N. F. H. Tothill; Y. G. Tsamis

The Gould Belt Legacy Survey will survey nearby star-forming regions (within 500 pc), using HARP (Heterodyne Array Receiver Programme), SCUBA-2 (Submillimetre Common- User Bolometer Array 2) and POL-2 (Polarimeter 2) on the James Clerk Maxwell Telescope (JCMT). This paper describes the initial data obtained using HARP to observe 12CO, 13CO and C18O J = 3 - 2 towards two regions in Orion B, NGC 2024 and NGC 2071. We describe the physical characteristics of the two clouds, calculating temperatures and opacities utilizing all three isotopologues. We find good agreement between temperatures calculated from CO and from dust emission in the dense, energetic regions. We determine the mass and energetics of the clouds, and of the high-velocity material seen in 12CO emission, and compare the relative energetics of the high- and low-velocity material in the two clouds. We present a CLUMPFIND analysis of the 13CO condensations. The slope of the condensation mass functions, at the high-mass ends, is similar to the slope of the initial mass function.


Monthly Notices of the Royal Astronomical Society | 2012

The JCMT Legacy Survey of the Gould Belt: mapping 13CO and C18O in Orion A

J. V. Buckle; C. J. Davis; J. Di Francesco; S. Graves; D. Nutter; J. S. Richer; Joe Roberts; Derek Ward-Thompson; G. J. White; Christopher M. Brunt; Harold M. Butner; B. Cavanagh; A. Chrysostomou; Emily I. Curtis; A. Duarte-Cabral; Mireya Etxaluze; Michel Fich; Per Friberg; R. K. Friesen; G. A. Fuller; J. S. Greaves; J. Hatchell; M. R. Hogerheijde; D. Johnstone; Brenda C. Matthews; H. E. Matthews; J. M. C. Rawlings; S. Sadavoy; Robert J. Simpson; N. F. H. Tothill

The Gould Belt Legacy Survey will map star-forming regions within 500 pc, using Heterodyne Array Receiver Programme (HARP), Submillimetre Common-User Bolometer Array 2 (SCUBA-2) and Polarimeter 2 (POL-2) on the James Clerk Maxwell Telescope (JCMT). This paper describes HARP observations of the J= 3 → 2 transitions of 13CO and C18O towards Orion A. The 15 arcsec resolution observations cover 5 pc of the Orion filament, including OMC 1 (including BN–KL and Orion bar), OMC 2/3 and OMC 4, and allow a comparative study of the molecular gas properties throughout the star-forming cloud. The filament shows a velocity gradient of ∼1 km s−1 pc−1 between OMC 1, 2 and 3, and high-velocity emission is detected in both isotopologues. The Orion Nebula and Bar have the largest masses and linewidths, and dominate the mass and energetics of the high-velocity material. Compact, spatially resolved emission from CH3CN, 13CH3OH, SO, HCOOCH3, CH3CHO and CH3OCHO is detected towards the Orion Hot Core. The cloud is warm, with a median excitation temperature of ∼24 K; the Orion Bar has the highest excitation temperature gas, at >80 K. The C18O excitation temperature correlates well with the dust temperature (to within 40 per cent). The C18O emission is optically thin, and the 13CO emission is marginally optically thick; despite its high mass, OMC 1 shows the lowest opacities. A virial analysis indicates that Orion A is too massive for thermal or turbulent support, but is consistent with a model of a filamentary cloud that is threaded by helical magnetic fields. The variation of physical conditions across the cloud is reflected in the physical characteristics of the dust cores. We find similar core properties between starless and protostellar cores, but variations in core properties with position in the filament. The OMC 1 cores have the highest velocity dispersions and masses, followed by OMC 2/3 and OMC 4. The differing fragmentation of these cores may explain why OMC 1 has formed clusters of high-mass stars, whereas OMC 4 produces fewer, predominantly low-mass stars.


Astronomy and Astrophysics | 2010

The physical and dynamical structure of Serpens Two very different sub-(proto)clusters ,

A. Duarte-Cabral; G. A. Fuller; Nicolas Peretto; J. Hatchell; E. F. Ladd; Jane V. Buckle; J. S. Richer; S. Graves

Context. The Serpens North cluster is a nearby low mass star forming region which is part of the Gould belt. It contains a range of young stars thought to correspond to two different bursts of star formation and provides the opportunity to study different stages of cluster formation. Aims. This work aims to study the molecular gas in the Serpens North cluster to probe the origin of the most recent burst of star formation in Serpens. Methods. Transitions of the C17O and C18O observed with the IRAM 30 m telescope and JCMT are used to study the mass and velocity structure of the region while the physical properties of the gas are derived using LTE and non-LTE analyses of the three lowest transitions of C18O. Results. The molecular emission traces the two centres of star formation which are seen in submillimetre dust continuum emission. In the ~40 NW sub-cluster the gas and dust emission trace the same structures although there is evidence of some depletion of the gas phase C18O. The gas has a very uniform temperature (~10 K) and velocity (~8.5 km s-1) throughout the region. This is in marked contrast to the SE sub-cluster. In this region the dust and the gas trace different features, with the temperature peaking between the submillimetre continuum sources, reaching up to ~14 K. The gas in this region has double peaked line profiles which reveal the presence of a second cloud in the line of sight. The submillimetre dust continuum sources predominantly appear located in the interface region between the two clouds. Conclusions. Even though they are at a similar stage of evolution, the two Serpens sub-clusters have very different characteristics. We propose that these differences are linked to the initial trigger of the collapse in the regions and suggest that a cloud-cloud collision could explain the observed properties.


Astronomy and Astrophysics | 2014

SiO emission from low- and high-velocity shocks in Cygnus-X massive dense clumps

A. Duarte-Cabral; Sylvain Bontemps; F. Motte; A. Gusdorf; T. Csengeri; N. Schneider; F. Louvet

We used PdBI observations of SiO (2-1) to investigate the morphology and profile of the SiO emission within several massive dense clumps (MDCs) in Cygnus-X. We find that most molecular outflows are detected in both SiO and CO, although there are some cases of CO outflows with no SiO counterpart. We find a significant amount of narrow line SiO emission that appears to be unrelated to outflows. The fraction of the total SiO luminosity that is not associated with outflows is highly variable in the different MDCs (from 10% to 90%); this might be a problem when extrapolating outflow properties from SiO luminosities without resolving individual outflows. The extent of the narrow SiO emission varies from rather compact (~ 0.03 pc) to widespread (~0.2 pc), and its kinematics often differs from those found by other high-density tracers such as H13CO+. We find that the least centrally concentrated clumps with the least massive protostellar cores have the most widespread narrow SiO emission. In line with previous evidence of SiO emission associated with low-velocity shocks, we propose an evolutionary picture to explain the existence and distribution of narrow SiO line profiles. In this scenario, the least centrally condensed MDCs are at an early stage where the SiO emission traces shocks from the large-scale collapse of material onto the MDC (e.g. CygX-N40). As the MDC collapses, the SiO emission becomes more confined to the close surroundings of cores, tracing the post-shock material from the infalling MDC against the dense cores (e.g. CygX-N3, N12, and N48). At later stages, when single massive protostars are formed, the SiO luminosity is largely dominated by powerful outflows, and the weaker narrow component shows perhaps the last remnants of the initial collapse (e.g. CygX-N53 and N63).


Astronomy and Astrophysics | 2015

Bipolar H II regions - Morphology and star formation in their vicinity I. G319.88+00.79 and G010.32-00.15

Lise Deharveng; A. Zavagno; M. R. Samal; L. D. Anderson; G. Leleu; D. Brevot; A. Duarte-Cabral; S. Molinari; M. Pestalozzi; Jonathan B. Foster; Jill Rathborne; James M. Jackson

Aims. Our goal is to identify bipolar H II regions and to understand their morphology, their evolution, and the role they play in the formation of new generations of stars. Methods. We use the Spitzer-GLIMPSE, -MIPSGAL, and Herschel-Hi-GAL surveys to identify bipolar H II regions, looking for (ionized) lobes extending perpendicular to dense filamentary structures. We search for their exciting star(s) and estimate their distances using near-IR data from the 2MASS or UKIDSS surveys. Dense molecular clumps are detected using Herschel-SPIRE data, and we estimate their temperature, column density, mass, and density. MALT90 observations allow us to ascertain their association with the central H II region (association based on similar velocities). We identify Class 0/I young stellar objects (YSOs) using their Spitzer and Herschel-PACS emissions. These methods will be applied to the entire sample of candidate bipolar H II regions to be presented in a forthcoming paper. Results. This paper focuses on two bipolar H II regions, one that is especially interesting in terms of its morphology, G319.88+00.79, and one in terms of its star formation, G010.32-00.15. Their exciting clusters are identified and their photometric distances estimated to be 2.6 kpc and 1.75 kpc, respectively; thus G010.32-00.15 (known as W31 north) lies much closer than previously assumed. We suggest that these regions formed in dense and flat structures that contain filaments. They have a central ionized region and ionized lobes extending perpendicular to the parental cloud. The remains of the parental cloud appear as dense (more than 10(4) cm(-3)) and cold (14-17 K) condensations. The dust in the photodissociation regions (in regions adjacent to the ionized gas) is warm (19-25 K). Dense massive clumps are present around the central ionized region. G010.32-00.14 is especially remarkable because five clumps of several hundred solar masses surround the central H II region; their peak column density is a few 10(23) cm(-2), and the mean density in their central regions reaches several 10(5) cm(-3). Four of them contain at least one massive YSO (including an ultracompact H II region and a high-luminosity Class I YSO); these clumps also contain extended green objects (EGOs) and Class II methanol masers. This morphology suggests that the formation of a second generation of massive stars has been triggered by the central bipolar H II region. It occurs in the compressed material of the parental cloud.

Collaboration


Dive into the A. Duarte-Cabral's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Chrysostomou

University of Hertfordshire

View shared research outputs
Top Co-Authors

Avatar

G. A. Fuller

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. V. Buckle

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge