Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A.E.M.F. Soffers is active.

Publication


Featured researches published by A.E.M.F. Soffers.


Free Radical Biology and Medicine | 2001

The influence of pH on antioxidant properties and the mechanism of antioxidant action of hydroxyflavones.

Katarzyna Lemańska; Henryk Szymusiak; Bożena Tyrakowska; Ryszard Zieliński; A.E.M.F. Soffers; Ivonne M. C. M. Rietjens

The effect of the pH on antioxidant properties of a series of hydroxyflavones was investigated. The pKa of the individual hydroxyl moieties in the hydroxyflavones was compared to computer-calculated deprotonation energies. This resulted in a quantitative structure activity relationship (QSAR), which enables the estimation of pKa values of individual hydroxyl moieties, also in hydroxyflavones for which these pKa values are not available. Comparison of the pKa values to the pH-dependent antioxidant profiles, determined by the TEAC assay, reveals that for various hydroxyflavones the pH-dependent behavior is related to hydroxyl moiety deprotonation, resulting in an increase of the antioxidant potential upon formation of the deprotonated forms. Comparison of these experimental results to computer calculated O-H bond dissociation energies (BDE) and ionization potentials (IP) of the nondeprotonated and the deprotonated forms of the various hydroxyflavones indicates that especially the parameter reflecting the ease of electron donation, i.e., the IP, and not the BDE, is greatly influenced by the deprotonation. Based on these results it is concluded that upon deprotonation the TEAC value increases (radical scavenging capacity increases) because electron-, not H*-, donation becomes easier. Taking into account that the mechanism of radical scavenging antioxidant activity of the neutral form of the hydroxyflavones is generally considered to be hydrogen atom donation, this implies than not only the ease of radical scavenging, but also the mechanism of antioxidant action changes upon hydroxyflavone deprotonation.


Molecular Nutrition & Food Research | 2012

Alkaloids in the human food chain – Natural occurrence and possible adverse effects

I. Koleva; T.A. van Beek; A.E.M.F. Soffers; Birgit Dusemund; Ivonne M. C. M. Rietjens

Alkaloid-containing plants are an intrinsic part of the regular Western diet. The present paper summarizes the occurrence of alkaloids in the food chain, their mode of action and possible adverse effects including a safety assessment. Pyrrolizidine alkaloids are a reason for concern because of their bioactivation to reactive alkylating intermediates. Several quinolizidine alkaloids, β-carboline alkaloids, ergot alkaloids and steroid alkaloids are active without bioactivation and mostly act as neurotoxins. Regulatory agencies are aware of the risks and have taken or are considering appropriate regulatory actions for most alkaloids. These vary from setting limits for the presence of a compound in feed, foods and beverages, trying to define safe upper limits, advising on a strategy aiming at restrictions in use, informing the public to be cautious or taking specific plant varieties from the market. For some alkaloids known to be present in the modern food chain, e.g., piperine, nicotine, theobromine, theophylline and tropane alkaloids risks coming from the human food chain are considered to be low if not negligible. Remarkably, for many alkaloids that are known constituents of the modern food chain and of possible concern, tolerable daily intake values have so far not been defined.


Free Radical Biology and Medicine | 1999

TEAC antioxidant activity of 4-hydroxybenzoates

Bożena Tyrakowska; A.E.M.F. Soffers; Henryk Szymusiak; Marelle G. Boersma; Katarzyna Lemańska; Jacques Vervoort; Ivonne M. C. M. Rietjens

The influence of pH, intrinsic electron donating capacity, and intrinsic hydrogen atom donating capacity on the antioxidant potential of series of hydroxy and fluorine substituted 4-hydroxybenzoates was investigated experimentally and also on the basis of computer calculations. The pH-dependent behavior of the compounds in the TEAC assay revealed different antioxidant behavior of the nondissociated monoanionic form and the deprotonated dianionic form of the 4-hydroxybenzoates. Upon deprotonation the radical scavenging ability of the 4-hydroxybenzoates increases significantly. For mechanistic comparison a series of fluorobenzoates was synthesized and included in the studies. The fluorine substituents were shown to affect the proton and electron donating abilities of 4-hydroxybenzoate in the same way as hydroxyl substituents. In contrast, the fluorine substituents influenced the TEAC value and the hydrogen atom donating capacity of 4-hydroxybenzoate in a way different from the hydroxyl moieties. Comparison of these experimental data to computer-calculated characteristics indicates that the antioxidant behavior of the monoanionic forms of the 4-hydroxybenzoates is not determined by the tendency of the molecule to donate an electron, but by its ability to donate a hydrogen atom. Altogether, the results explain qualitatively and quantitatively how the number and position of OH moieties affect the antioxidant behavior of 4-hydroxybenzoates.


Toxicology in Vitro | 2001

Computer-modeling-based QSARs for analyzing experimental data on biotransformation and toxicity.

A.E.M.F. Soffers; Marelle G. Boersma; Wouter H.J. Vaes; J. Vervoort; B. Tyrakowska; Joop L. M. Hermens; Ivonne M. C. M. Rietjens

Over the past decades the description of quantitative structure-activity relationships (QSARs) has been undertaken in order to find predictive models and/or mechanistic explanations for chemical as well as biological activities. This includes QSAR studies in toxicology. In an approach beyond the classical QSAR approaches, attempts have been made to define parameters for the QSAR studies on the basis of quantum mechanical computer calculations. The conversion of relatively small xenobiotics within the active sites of biotransformation enzymes can be expected to follow the general rules of chemistry. This makes the description of QSARs on the basis of only one parameter, chosen on the basis of insight in the mechanism, feasible. In contrast, toxicological endpoints can very often be the result of more than one physico-chemical interaction of the compound with the model system of interest. Therefore the description of quantitative structure-toxicity relationships often does not follow a one-descriptor mechanistic approach but starts from the other end, describing QSARs by multi-parameter approaches. The present paper focuses on the possibilities and restrictions of using computer-based QSAR modeling for analyzing experimental toxicological data, with emphasis on examples from the field of biotransformation and toxicity.


Chemosphere | 2009

Quantitative structure-activity relationship modeling of the toxicity of organothiophosphate pesticides to Daphnia magna and Cyprinus carpio

Elton Zvinavashe; Tingting Du; Tamas Griff; Hans van den Berg; A.E.M.F. Soffers; Jacques Vervoort; Albertinka J. Murk; Ivonne M. C. M. Rietjens

Within the REACH regulatory framework in the EU, quantitative structure-activity relationships (QSAR) models are expected to help reduce the number of animals used for experimental testing. The objective of this study was to develop QSAR models to describe the acute toxicity of organothiophosphate pesticides to aquatic organisms. Literature data sets for acute toxicity data of organothiophosphates to fish and one data set from experiments with 15 organothiophosphates on Daphniamagna performed in the present study were used to establish QSARs based on quantum mechanically derived molecular descriptors. The logarithm of the octanol/water partition coefficient, logK(ow,) the energy of the lowest unoccupied molecular orbital, E(lumo), and the energy of the highest occupied molecular orbital, E(homo) were used as descriptors. Additionally, it was investigated if toxicity data for the invertebrate D. magna could be used to build a QSAR model to predict toxicity to fish. Suitable QSAR models (0.80<r(2)<0.82) were derived to predict acute toxicity of organothiophosphates to fish (Cyprinus carpio) and the invertebrate (D. magna). Toxicity data for D. magna correlated well (r(2)=0.94) with toxicity data for C. carpio. This implies that by performing toxicity tests with D. magna, one can use our interspecies QSAR model to predict the acute toxicity of organothiophosphates to fish. The three QSAR models were validated either both internally and externally (D. magna) or internally only (carp and D. magna to carp). For each QSAR model, an applicability domain was defined based on the chemical structures and the ranges of the descriptor values of the training set compounds. From the 100196 European Inventory of Existing Commercial Chemical Substances (EINECS), 83 compounds were identified that fit the selection criteria for the QSAR models. For these compounds, using our QSAR models, one can obtain an indication of their toxicity without the need for additional experimental testing.


Free Radical Research | 1999

Antioxidant activities of carotenoids: Quantitative relationships between theoretical calculations and experimental literature data

A.E.M.F. Soffers; M. J. H. Van Haandel; Marelle G. Boersma; Colja Laane; Ivonne M. C. M. Rietjens

Quantitative structure activity relationships (QSARs) are described for the antioxidant activity of series of all-trans carotenoids. The antioxidant activity of the carotenoids is characterised by literature data for (i) their relative ability to scavenge the ABTS*+ radical cation, reflected by the so-called trolox equivalent antioxidant capacity (TEAC) value, (ii) their relative rate of oxidation by a range of free radicals, or (iii) their capacity to inhibit lipid peroxidation in multilamellar liposomes, leading to a decrease in formation of thiobarbituric acid reactive substances (TBARS). All these antioxidant values for radical scavenging action correlate quantitatively with computer-calculated ionisation potentials of the carotenoids. These correlations are observed both when the ionisation potential is calculated as the negative of the energy of the highest occupied molecular orbital (-E(HOMO)) of the molecule, or as the relative change in heat of formation (deltadeltaHF) upon the one-electron oxidation of the carotenoids. The calculations provide a theoretical assay able to characterise the intrinsic electron donating capacity of an antioxidant, in hydrophilic, hydrophobic or artificial membrane environment.


Chemical Research in Toxicology | 2008

QSAR models for predicting in vivo aquatic toxicity of chlorinated alkanes to fish

Elton Zvinavashe; Hans van den Berg; A.E.M.F. Soffers; Jacques Vervoort; Andreas P. Freidig; Albertinka J. Murk; Ivonne M. C. M. Rietjens

Quantitative structure-activity relationship (QSAR) models are expected to play a crucial role in reducing the number of animals to be used for toxicity testing resulting from the adoption of the new European Union chemical control system called Registration, Evaluation, and Authorization of Chemicals (REACH). The objective of the present study was to generate in vitro acute toxicity data that could be used to develop a QSAR model to describe acute in vivo toxicity of chlorinated alkanes. Cytotoxicity of a series of chlorinated alkanes to Chinese hamster ovary (CHO) cells was observed at concentrations similar to those that have been shown previously to be toxic to fish. Strong correlations exist between the acute in vitro toxicity of the chlorinated alkanes and (i) hydrophobicity [modeled by the calculated log K ow (octanol-water partition coefficient); r (2) = 0.883 and r int (2) = 0.854] and (ii) in vivo acute toxicity to fish ( r (2) = 0.758). A QSAR model has been developed to predict in vivo acute toxicity to fish, based on the in vitro data and even on in silico log K ow data only. The developed QSAR model is applicable to chlorinated alkanes with up to 10 carbon atoms, up to eight chlorine atoms, and log K ow values lying within the range from 1.71 to 5.70. Out of the 100204 compounds on the European Inventory of Existing Chemicals (EINECS), our QSAR model covers 77 (0.1%) of them. Our findings demonstrate that in vitro experiments and even in silico calculations can replace animal experiments in the prediction of the acute toxicity of chlorinated alkanes.


Journal of Biological Inorganic Chemistry | 1996

Computer calculation-based quantitative structure-activity relationships for the oxidation of phenol derivatives by horseradish peroxidase compound II.

M.J.H. van Haandel; Ivonne M. C. M. Rietjens; A.E.M.F. Soffers; Cees Veeger; J. Vervoort; S. Modi; M.S. Mondal; P.K. Patel; Digambar V. Behere

Abstract The second-order rate constants for the oxidation of a series of phenol derivatives by horseradish peroxidase compound II were compared to computer-calculated chemical parameters characteristic for this reaction step. The phenol derivatives studied were phenol, 4-chlorophenol, 3-hydroxyphenol, 3-methylphenol, 4-methylphenol, 4-hydroxybenzoate, 4-methoxyphenol and 4-hydroxybenzaldehyde. Assuming a reaction of the phenolic substrates in their non-dissociated, uncharged forms, clear correlations (r = 0.977 and r = 0.905) were obtained between the natural logarithm of the second-order rate constants (ln kapp and ln k2 respectively) for their oxidation by compound II and their calculated ionisation potential, i.e. minus the energy of their highest occupied molecular orbital [E(HOMO)]. In addition to this first approach in which the quantitative structure-activity relationship (QSAR) was based on a calculated frontier orbital parameter of the substrate, in a second and third approach the relative heat of formation (ΔΔHF) calculated for the process of one-electron abstraction and H• abstraction from the phenol derivatives was used as a parameter. Plots of the natural logarithms of the second-order rate constants (kapp and k2) for the reaction and the calculated ΔΔHF values for the process of one-electron abstraction also provide clear QSARs with correlation coefficients of –0.968 and –0.926 respectively. Plots of the natural logarithms of the second-order rate constants (kapp and k2) for the reaction and the calculated ΔΔHF values for the process of H• abstraction provide QSARs with correlation coefficients of –0.989 and –0.922 respectively. Since both mechanisms considered, i.e. initial electron abstraction versus initial H• abstraction, provided clear QSARs, the results could not be used to discriminate between these two possible mechanisms for phenol oxidation by horseradish peroxidase compound II. The computer calculation-based QSARs thus obtained for the oxidation of the various phenol derivatives by compound II from horseradish peroxidase indicate the validity of the approaches investigated, i.e. both the frontier orbital approach and the approach in which the process is described by calculated relative heats of formation. The results also indicate that outcomes from computer calculations on relatively unrelated phenol derivatives can be reliably compared to one another. Furthermore, as the actual oxidation of peroxidase substrates by compound II is known to be the rate-limiting step in the overall catalysis by horseradish peroxidase, the QSARs of the present study may have implications for the differences in the overall rate of substrate oxidation of the phenol derivatives by horseradish peroxidase.


Environmental Toxicology and Chemistry | 2006

Quantum chemistry based quantitative structure-activity relationships for modeling the (sub)acute toxicity of substituted mononitrobenzenes in aquatic systems

Elton Zvinavashe; Albertinka J. Murk; Jacques Vervoort; A.E.M.F. Soffers; Andreas P. Freidig; Ivonne M. C. M. Rietjens

Fifteen experimental literature data sets on the acute toxicity of substituted nitrobenzenes to algae (Scenedesmus obliquus, Chlorella pyrenoidosa, C. vulgaris), daphnids (Daphnia magna, D. carinata), fish (Cyprinus carpio, Poecilia reticulata), protozoa (Tetrahymena pyriformis), bacteria (Phosphobacterium phosphoreum), and yeast (Saccharomyces cerevisiae) were used to establish quantum chemistry based quantitative structure-activity relationships (QSARs). The logarithm of the octanol/water partition coefficient, log Kow, and the energy of the lowest unoccupied molecular orbital, Elumo, were used as descriptors. Suitable QSAR models (0.65 < r2 < 0.98) to predict acute toxicity of substituted mononitrobenzenes to protozoa, fish, daphnids, yeast, and algae have been derived. The log Kow was a sufficient descriptor for all cases, with the additional Elumo descriptor being required only for algae. The QSARs were found to be valid for neutral substituted mononitrobenzenes with no -OH, -COOH, or -CN substituents attached directly to the ring. From the 100,196 European Inventory of Existing Commercial Substances (EINECS), 497 chemicals were identified that fit the selection criteria for the established QSARs. Based on these results, an advisory tool has been developed that directs users to the appropriate QSAR model to apply for various types of organisms within specified log Kow ranges. Using this tool, it is possible to obtain a good indication of the toxicity of a large set of EINECS chemicals and newly developed substituted mononitrobenzenes to five different organisms without the need for additional experimental testing.


Chemico-Biological Interactions | 1995

Different metabolic pathways of 2,5-difluoronitrobenzene and 2,5-difluoroaminobenzene compared to molecular orbital substrate characteristics

Ivonne M. C. M. Rietjens; N.P.H. Cnubben; M. J. H. Van Haandel; Bożena Tyrakowska; A.E.M.F. Soffers; J. Vervoort

The in vivo metabolite patterns of 2,5-difluoroaminobenzene and of its nitrobenzene analogue, 2,5-difluoronitrobenzene, were determined using 19F NMR analysis of urine samples. Results obtained demonstrate significant differences between the biotransformation patterns of these two analogues. For the aminobenzene, cytochrome P450 catalysed aromatic hydroxylation presents the main metabolic pathway. 2,5-Difluoronitrobenzene was predominantly metabolised through glutathione conjugation leading to excretion of 5-fluoro-2-(N-acetylcysteinyl)-nitrobenzene and fluoride anions, and, to a minor extent, through cytochrome P450 catalysed hydroxylation and nitroreduction. Pretreatment of the rats with various inducers of cytochrome P450 enzymes, known also to influence glutathione S-transferase enzyme patterns, followed by exposure to the 2,5-difluoroamino- or 2,5-difluoronitrobenzene, generally resulted in metabolite patterns that varied only to a small (< or = 12%) extent. Based on these results it was concluded that the biotransformation enzyme pattern is not the predominant factor in determining the metabolic route of these two model compounds. Additional in vitro microsomal and cytosolic incubations with 2,5-difluoroaminobenzene and 2,5-difluoronitrobenzene qualitatively confirmed the in vivo results. NADPH/oxygen supported microsomal cytochrome P450 catalysed hydroxylation was observed only for 2,5-difluoroaminobenzene whereas cytosolic GSH conjugation occurred only in incubations with 2,5-difluoronitrobenzene as the substrate. Outcomes from molecular orbital calculations provided a working hypothesis that can explain the difference in metabolic pathways of the nitro- and aminobenzene derivative on the basis of their chemical characteristics. This hypothesis states that the chances for a nitro- or aminobenzene derivative to enter either a cytochrome P450 or a glutathione conjugation pathway are determined by the relative energy levels of the frontier orbitals of the compounds. The aminobenzene derivative has relatively high energy molecular orbitals leading to an efficient reaction of its highest occupied molecular orbital (HOMO) with the singly occupied molecular orbital of the cytochrome P450 (FeO)3+ intermediate, but a low reactivity of its lowest unoccupied molecular orbital (LUMO) with the HOMO of glutathione. The nitrobenzene, on the other hand, has molecular orbitals of relatively low energy, explaining the efficient interaction, and, thus, reaction between its LUMO and the HOMO electrons of glutathione, but resulting in low reactivity with the SOMO electron of the cytochrome P450 (FeO)3+ reaction intermediate.

Collaboration


Dive into the A.E.M.F. Soffers's collaboration.

Top Co-Authors

Avatar

Ivonne M. C. M. Rietjens

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Jacques Vervoort

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

J. Vervoort

University of South Africa

View shared research outputs
Top Co-Authors

Avatar

Bożena Tyrakowska

Poznań University of Economics

View shared research outputs
Top Co-Authors

Avatar

Albertinka J. Murk

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Cees Veeger

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Elton Zvinavashe

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

N.H.P. Cnubben

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Ruud A. Woutersen

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Andreas P. Freidig

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge