Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A E Relling is active.

Publication


Featured researches published by A E Relling.


Domestic Animal Endocrinology | 2008

Abomasal infusion of casein, starch and soybean oil differentially affect plasma concentrations of gut peptides and feed intake in lactating dairy cows

A E Relling; C.K. Reynolds

The effects of specific nutrients on secretion and plasma concentrations of gut peptides (glucagon-like peptide-1((7-36)) amide (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and cholecystokinin-8 (CCK)) differ across species, but are not reported for cattle. Our objective was to determine acute (hours) and chronic (1 week) effects of increased abomasal supply of protein, carbohydrate, or fat to the small intestine on dry matter intake (DMI) and plasma concentrations of GLP-1, GIP, CCK, and insulin. Four mid-lactation Holstein cows were used in a 4 x 4 Latin square design experiment. Treatments were 7-day abomasal infusions of water, soybean oil (500 g/d), corn starch (1100 g/d), or casein (800 g/d). Jugular vein plasma was obtained over 7h at the end of the first and last day of infusions. Oil infusion decreased DMI on day 7, but total metabolizable energy (ME) supply (diet plus infusate) did not differ from water infusion. Casein and starch infusion had no effect on feed DMI; thus, ME supply increased. Decreased DMI on day 7 of oil infusion was accompanied by increased plasma GLP-1 concentration, but decreased plasma CCK concentration. Increased plasma GIP concentration was associated with increased ME supply on day 7 of casein and starch infusion. Casein infusion tended to increase plasma CCK concentration on both days of sampling, and increased plasma GLP-1 and insulin concentration on day 1 of infusion. The present data indicate a sustained elevation of plasma concentration of GLP-1, but not CCK, may contribute to the reduced DMI observed in dairy cows provided supplemental fat.


Journal of Animal Science | 2010

Effect of feed restriction and supplemental dietary fat on gut peptide and hypothalamic neuropeptide messenger ribonucleic acid concentrations in growing wethers.

A E Relling; Joy L. Pate; C.K. Reynolds; S. C. Loerch

The objectives of the present study were 1) to evaluate the effects of supplemental fat and ME intake on plasma concentrations of glucagon-like peptide-1 (GLP-1), cholecystokinin (CCK), glucose-dependent insulinotropic polypeptide, ghrelin, and oxyntomodulin; and 2) to determine the association of these peptides with DMI and the hypothalamic concentration of mRNA for the following neuropeptides: neuropeptide Y (NPY), agouti-related peptide (AgRP), and proopiomelanocortin (POMC). In a completely randomized block design with a 2 x 2 factorial arrangement of treatments, 32 pens with 2 wethers each were restricted-fed (2.45 Mcal/lamb per day) or offered diets ad libitum (n = 16) with or without 6% supplemental fat (n = 16) for a period of 30 d. Dry matter intake was measured daily. On d 8, 15, 22, and 29, BW was measured before feeding, and 6 h after feeding, blood samples were collected for plasma measurement of insulin, GLP-1, CCK, ghrelin, glucose-dependent insulinotropic polypeptide, oxyntomodulin, glucose, and NEFA concentrations. On d 29, blood was collected 30 min before feeding for the same hormone and metabolite analyses. At the end of the experiment, wethers were slaughtered and the hypothalami were collected to measure concentrations of NPY, AgRP, and POMC mRNA. Offering feed ad libitum (resulting in greater ME intake) increased plasma insulin and NEFA concentrations (P = 0.02 and 0.02, respectively) and decreased hypothalamic mRNA expression of NPY and AgRP (P = 0.07 and 0.02, respectively) compared with the restricted-fed wethers. There was a trend for the addition of dietary fat to decrease DMI (P = 0.12). Addition of dietary fat decreased insulin and glucose concentrations (P < 0.05 and 0.01, respectively) and tended to increase hypothalamic mRNA concentrations for NPY and AgRP (P = 0.07 and 0.11, respectively). Plasma GLP-1 and CCK concentrations increased in wethers offered feed ad libitum compared with restricted-fed wethers, but the response was greater when wethers were offered feed ad libitum and had supplemental fat in the diet (fat x intake interaction, P = 0.04). The prefeeding plasma ghrelin concentration was greater in restricted-fed wethers compared with those offered feed ad libitum, but the concentrations were similar 6 h after feeding (intake x time interaction, P < 0.01). Supplemental dietary fat did not affect (P = 0.22) plasma ghrelin concentration. We conclude that insulin, ghrelin, CCK, and GLP-1 may regulate DMI in sheep by regulating the hypothalamic gene expression of NPY, AgRP, and POMC.


Journal of Animal Science | 2011

Effect of feeding fat or intrajugular infusion of glucagon-like peptide-1 and cholecystokinin on dry matter intake, digestibility, and digesta rate of passage in growing wethers

A E Relling; C.K. Reynolds; S. C. Loerch

A cause and effect relationship between glucagon-like peptide 1 (7, 36) amide (GLP-1) and cholecystokinin (CCK) and DMI regulation has not been established in ruminants. Three randomized complete block experiments were conducted to determine the effect of feeding fat or infusing GLP-1 or CCK intravenously on DMI, nutrient digestibility, and Cr rate of passage (using Cr(2)O(3) as a marker) in wethers. A total of 18 Targhee × Hampshire wethers (36.5 ± 2.5 kg of BW) were used, and each experiment consisted of four 21-d periods (14 d for adaptation and 7 d for infusion and sampling). Wethers allotted to the control treatments served as the controls for all 3 experiments; experiments were performed simultaneously. The basal diet was 60% concentrate and 40% forage. In Exp. 1, treatments were the control (0% added fat) and addition of 4 or 6% Ca salts of palm oil fatty acids (DM basis). Treatments in Exp. 2 and 3 were the control and 3 jugular vein infusion dosages of GLP-1 (0.052, 0.103, or 0.155 µg•kg of BW(-1)•d(-1)) or CCK (0.069, 0.138, or 0.207 µg•kg of BW(-1)•d(-1)), respectively. Increases in plasma GLP-1 and CCK concentrations during hormone infusions were comparable with increases observed when increasing amounts of fat were fed. Feeding fat and infusion of GLP-1 tended (linear, P = 0.12; quadratic, P = 0.13) to decrease DMI. Infusion of CCK did not affect (P > 0.21) DMI. Retention time of Cr in the total gastrointestinal tract decreased (linear, P < 0.01) when fat was fed, but was not affected by GLP-1 or CCK infusion. In conclusion, jugular vein infusion produced similar plasma CCK and GLP-1 concentrations as observed when fat was fed. The effects of feeding fat on DMI may be partially regulated by plasma concentration of GLP-1, but are not likely due solely to changes in a single hormone concentration.


Domestic Animal Endocrinology | 2010

Plasma ghrelin and oxyntomodulin concentrations in lactating dairy cows receiving abomasal soybean oil, corn starch, and casein infusions

A E Relling; S. C. Loerch; C.K. Reynolds

The effects of increased postruminal supply of casein, corn starch, and soybean oil on plasma concentrations of the gastrointestinal hormones ghrelin and oxyntomodulin (OXM) were investigated. Four mid-lactation Holstein cows were used in a 4 x 4 Latin square. Treatments were continuous abomasal infusions (23 h/d) for 7 d of water, soybean oil (500 g/d), corn starch (1100 g/d), or casein (800 g/d). Jugular vein plasma was obtained every 30 min for 7h on days 1 and 7. Soybean oil and casein infusion decreased preprandial plasma ghrelin concentration by approximately 20% on both d (time-by-treatment P<0.10); however, dry matter intake (DMI) was depressed only after 7 d of oil infusion. Infusion of soybean oil, corn starch, or casein did not change the plasma OXM concentration (P>0.20). The present data indicate that plasma ghrelin concentration is depressed immediately before feeding by the postruminal infusion of soybean oil and casein, but it is not affected during the postprandial period. Plasma ghrelin concentration was not altered (P>0.20), pre- or postfeeding, by increased postruminal supply of corn starch. In addition, plasma OXM concentration did not respond (P>0.20) to postruminal nutrient infusion. In conclusion, a decrease in DMI when fat is infused could be partially explained by the decrease in prefeeding plasma ghrelin concentration, but a decrease in prefeeding plasma ghrelin concentration is not always associated with a decrease in DMI, as observed for the infusion of casein. Plasma OXM concentration was not affected by postruminal infusion of macronutrients.


Journal of Animal Physiology and Animal Nutrition | 2012

Effects of glucose, propionate and splanchnic hormones on neuropeptide mRNA concentrations in the ovine hypothalamus.

A E Relling; Kichoon Lee; S. C. Loerch; C.K. Reynolds

The capacity for glucose, propionate or hormones of splanchnic origin to influence appetite by directly regulating the expression of neuropeptides in the feeding centres of the hypothalamus of the ruminant is not described. Therefore, our objective was to measure the direct effect of metabolites (glucose and propionate) or hormones [insulin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1) and polypeptide YY (PYY)] on hypothalamic mRNA concentrations for neuropeptide Y (NPY), agouti-related peptide (AgRP) and proopiomelanocortin (POMC) following in vitro incubation. Hypothalamic tissue from 4- to 5-month-old lambs was obtained at slaughter and immediately incubated in culture media for 2 h at 36 °C. Treatments included a control Dulbeccos modified Eagle medium (DMEM) containing 1 mm glucose or DMEM with the following additions: 10 mm glucose, 1 mm propionate, 1 nm insulin, 120 pm GLP-1, 100 pm PYY, 80 pm CCK or 10 mm glucose plus 1 nm insulin. The abundance of mRNA for NPY, AgRP and POMC was measured using quantitative reverse transcriptase PCR. Fishers protected LSD test was used to compare changes in relative mRNA concentrations for the hypothalamus incubated in the control media vs. the rest of the treatments. The media containing glucose plus insulin increased POMC mRNA concentration (p <0.05), but did not affect NPY or AgRP mRNA concentration. There were no effects observed for the other treatments (p > 0.20). Results of the present study are consistent with the concept that effects of propionate on feed intake in ruminants is not mediated through direct effects on the hypothalamus, and that insulin is required for an effect of glucose on hypothalamic POMC expression.


Zygote | 2017

The presence of acylated ghrelin during in vitro maturation of bovine oocytes induces cumulus cell DNA damage and apoptosis, and impairs early embryo development

Matías Ángel Sirini; Juan Mateo Anchordoquy; Juan Patricio Anchordoquy; Ana M. Pascua; Noelia Nikoloff; Ana Carranza; A E Relling; Cecilia Furnus

The aim of this study was to investigate the effects of acylated ghrelin supplementation during in vitro maturation (IVM) of bovine oocytes. IVM medium was supplemented with 20, 40 or 60 pM acylated ghrelin concentrations. Cumulus expansion area and oocyte nuclear maturation were studied as maturation parameters. Cumulus-oocyte complexes (COC) were assessed with the comet, apoptosis and viability assays. The in vitro effects of acylated ghrelin on embryo developmental capacity and embryo quality were also evaluated. Results demonstrated that acylated ghrelin did not affect oocyte nuclear maturation and cumulus expansion area. However, it induced cumulus cell (CC) death, apoptosis and DNA damage. The damage increased as a function of the concentration employed. Additionally, the percentages of blastocyst yield, hatching and embryo quality decreased with all acylated ghrelin concentrations tested. Our study highlights the importance of acylated ghrelin in bovine reproduction, suggesting that this metabolic hormone could function as a signal that prevents the progress to reproductive processes.


Journal of Animal Science | 2018

Prepartum fatty acid supplementation in sheep. III. Effect of eicosapentaenoic acid and docosahexaenoic acid during finishing on performance, hypothalamus gene expression, and muscle fatty acids composition in lambs1

Ana Cristina Carranza Martin; Danielle Nicole Coleman; Lyda Guadalupe Garcia; Cecilia Furnus; A E Relling

The objectives of this study were to evaluate the effect of feeding an enriched diet with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) to finishing lambs born from ewes supplemented either with or without EPA and DHA during late gestation on productive performance, muscle fatty acid (FA), and hypothalamus mRNA concentration of metabolic genes and hormone receptors. Lambs born from dams fed during the last 50 d of gestation either with a control diet containing 0.39% Ca salts of palmitic fatty acid distillate (C) or Ca salts enriched with EPA and DHA (PFA) were used. After weaning lambs (n = 70) were blocked by weight (BW) and used in a 2 × 2 factorial into 2 finishing diets containing 1.5% of C or PFA. The 2 factors were the ewe diet and the finishing diet. Lambs (37.9 ± 0.4 kg) were weighed and blood sampled for glucose and NEFA measurements at days 1, 14, 28, and 42. Dry matter intake (DMI) was measured daily. At day 43, 14 females and 14 males were slaughtered, and hot carcass weight, body wall thickness, rib eye area, and FA composition of Longissumus thoracis muscle were evaluated. Female hypothalamuses were obtained and mRNA concentration of hormone receptors, neuropeptides, and their receptors was measured. Lambs born from PFA dams were heavier (P < 0.01). There was a time × finishing diet interaction for BW (P = 0.03), and lambs fed C had a greater BW. Lambs fed C had an increase in DMI (P < 0.01). There were no significant differences in plasma glucose and NEFA concentration (P > 0.1). Lambs born from PFA dams had a greater concentration of C22:0 (P < 0.03). Lambs fed C had higher concentrations of C18:1c15 (P < 0.01), C17:0 (P < 0.09), C18:0 (P < 0.09), and n6/n3 (P < 0.01). Lambs fed PFA had greater concentration (P < 0.05) of C16:1, C22:1, C20:5, C22:5, C22:6, total n3 FA, and total EPA and DHA. There was a significant dam × finishing diet interaction (P ≤ 0.08) on mRNA concentration for MCR3, CCK-R, Cort-R, and CART. Lambs, which had the same treatment as their dams, showed lower overall mRNA concentration than those with different treatments between them and their dams. Lambs born from PFA ewes had lower concentration of MCR4 mRNA (P = 0.09) than C. Agouti-related peptides mRNA concentration was lower in lambs fed PFA (P = 0.06) than C. In conclusion, changes on lamb performance, muscle fatty acid composition, and metabolic neuropeptides depend not only on the lamb diet, but also on the dam diet during late gestation.


Canadian Journal of Animal Science | 2014

Intravenous glucagon like peptide-1 infusion does not affect dry matter intake or hypothalamic mRNA expression of neuropeptide Y, agouti related peptide and proopiomelatnocortin in wethers

A E Relling; S. C. Loerch; C.K. Reynolds

Relling, A. E., Loerch, S. C. and Reynolds, C. K. 2014. Intravenous glucagon like peptide-1 infusion does not affect dry matter intake or hypothalamic mRNA expression of neuropeptide Y, agouti related peptide and proopiomelanocortin in wethers. Can. J. Anim. Sci. 94: 357-362. The objectives of the present study were to determine the effects of jugular vein infusions of glucagon like peptide-1 (GLP-1) and dietary fat inclusion on dry matter intake, nutrient digestibility and hypothalamic mRNA concentration of neuropeptide Y, agouti related peptide, and proopiomelanocortin in growing sheep. Thirty-six wethers were used (40.7±3.3 kg BW). Treatments were a control diet (n=11), dietary addition (6% of dry matter) of Ca salts of palm oil fatty acids (n=12), or 6-d jugular vein infusions of 0.155 µg kg-1 body weight/day of GLP-1 (n=11). Hormone concentrations were measured in jugular vein plasma from samples taken on days 1, 4 and 6. On day 7, the wethers were slaughtered for hypothalamus collection to measure mRNA concentration. The dietary addition of 6% of Ca salts of palm oil increased plasma GLP-1 concentration (P<0.01) and decreased dry matter intake on day 1, but not on day 6 (time×treatment interaction, P<0.05). The infusion of GLP-1 did not change dry matter intake (P>0.20), but increased neutral detergent fibre digestibility (P<0.01). In conclusion, glucagon like peptide-1 infusion or feeding fat did not decrease dry matter intake or affect hypothalamic neuropeptide mRNA concentrations of sheep.


Journal of Dairy Science | 2007

Plasma concentrations of gut peptides in dairy cattle increase after calving

A E Relling; C.K. Reynolds


Energy and protein metabolism and nutrition. 3rd EAAP International Symposium on Energy and Protein Metabolism and Nutrition, Parma, Italy, 6-10 September, 2010 | 2010

Effects of diet protein level and forage source on energy and nitrogen balance and methane and nitrogen excretion in lactating dairy cows

C.K. Reynolds; L.A. Crompton; J.A.N. Mills; D.J. Humphries; P. Kirton; A E Relling; T.H. Misselbrook; D. R. Chadwick; D.I. Givens; G. M. Crovetto

Collaboration


Dive into the A E Relling's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cecilia Furnus

National University of La Plata

View shared research outputs
Top Co-Authors

Avatar

C C Furnus

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan Mateo Anchordoquy

National University of La Plata

View shared research outputs
Top Co-Authors

Avatar

Matías Ángel Sirini

National University of La Plata

View shared research outputs
Researchain Logo
Decentralizing Knowledge