Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. E. Yakutin is active.

Publication


Featured researches published by A. E. Yakutin.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2003

Precision measurement of energy and position resolutions of the BTeV electromagnetic calorimeter prototype

V.A. Batarin; T. Brennan; J. N. Butler; H. W. K. Cheung; A. A. Derevschikov; Yu.V Fomin; V. Frolov; Y.M. Goncharenko; V. N. Grishin; V.A. Kachanov; V.Y. Khodyrev; K. Khroustalev; A.S. Konstantinov; V.I. Kravtsov; Y. Kubota; V.M. Leontiev; V.A. Maisheev; Y.A. Matulenko; Yu. M. Melnick; A. P. Meschanin; N.E. Mikhalin; N. G. Minaev; V. V. Mochalov; D. A. Morozov; R. Mountain; L.V. Nogach; A.V. Ryazantsev; P. A. Semenov; K.E. Shestermanov; L. F. Soloviev

Abstract The energy dependence of the energy and position resolutions of the electromagnetic calorimeter prototype made of lead tungstate crystals produced in Bogoroditsk (Russia) and Shanghai (China) is presented. These measurements were carried out at the Protvino accelerator using a 1– 45 GeV electron beam. The crystals were coupled to photomultiplier tubes. The dependence of energy and position resolutions on different factors as well as the measured electromagnetic shower lateral profile are presented.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2003

Study of radiation damage in lead tungstate crystals using intense high-energy beams

V.A. Batarin; T. Brennan; J. N. Butler; H. W. K. Cheung; V.S. Datsko; A. M. Davidenko; A. A. Derevschikov; R.I. Dzhelyadin; Yu.V Fomin; V. Frolov; Y.M. Goncharenko; V. N. Grishin; V.A. Kachanov; V.Y. Khodyrev; K. Khroustalev; A.K. Konoplyannikov; A.S. Konstantinov; V.I. Kravtsov; Y. Kubota; V.M. Leontiev; V.S. Lukanin; V.A. Maisheev; Y.A. Matulenko; Yu. M. Melnick; A. P. Meschanin; N.E. Mikhalin; N. G. Minaev; V. V. Mochalov; D. A. Morozov; R. Mountain

We report on the effects of radiation on the light output of lead tungstate crystals. The crystals were irradiated by pure, intense high-energy electron and hadron beams as well as by a mixture of hadrons, neutrons and gammas. The crystals were manufactured in Bogoroditsk, Apatity (both Russia), and Shanghai (China). These studies were carried out at the 70-GeV proton accelerator in Protvino.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2006

Design and performance of LED calibration system prototype for the lead tungstate crystal calorimeter

V.A. Batarin; J. N. Butler; A. M. Davidenko; A. A. Derevschikov; Y.M. Goncharenko; V. N. Grishin; V. Kachanov; V.Y. Khodyrev; A.S. Konstantinov; V.A. Kormilitsin; V.I. Kravtsov; Y. Kubota; V.S. Lukanin; Y.A. Matulenko; Yu. M. Melnick; A. P. Meschanin; N.E. Mikhalin; N. G. Minaev; V. V. Mochalov; D. A. Morozov; L.V. Nogach; A.V. Ryazantsev; P. A. Semenov; V.K. Semenov; K.E. Shestermanov; L. F. Soloviev; S. Stone; A. Uzunian; A. N. Vasiliev; A. E. Yakutin

A highly stable monitoring system based on blue and red light emitting diodes coupled to a distribution network comprised of optical fibers has been developed for an electromagnetic calorimeter that uses lead tungstate crystals readout with photomultiplier tubes. We report of the system prototype design and on the results of laboratory tests. Stability better than 0.1% (r.m.s.) has been achieved during one week of prototype operation.


Journal of Physics: Conference Series | 2011

Preparation of new polarization experiment SPASCHARM at IHEP

V. V. Abramov; N. I. Belikov; Y. Goncharenko; V. N. Grishin; A. M. Davidenko; A.A. Derevshchikov; V. Kachanov; D. A. Konstantinov; V. A. Kormilitsyn; Yu. M. Melnik; A.P. Meshchanin; N. G. Minaev; V. V. Mochalov; D. A. Morozov; L. V. Nogach; S. B. Nurushev; A. V. Ryazantsev; S. V. Ryzhikov; P. A. Semenov; L. F. Soloviev; A. F. Prudkoglyad; A. Uzunian; A. N. Vasiliev; A. E. Yakutin; N. A. Bazhanov; N. S. Borisov; A. B. Lazarev; A. B. Neganov; Yu. A. Plis; O. N. Shchevelev

A new experiment SPASCHARM devoted to a systematic study of polarization phenomena in hadron-hadron interactions in the energy range 10-70 GeV is under preparation at IHEP (Protvino). The physical observables will be single-spin asymmetries, hyperon polarizations and spin-density matrix elements. A universal setup will detect and identify various neutral and charge particles in the full azimuthal angle and a wide polar angle range. A polarized target is used to measure the SSA. The SPASCHARM sub-detectors are being designed and constructed now. The possibility of obtaining a polarized proton beam for the SPASCHARM experiment from Lambda decays is under study.


Instruments and Experimental Techniques | 2009

Effect of γ Irradiation on the Scintillation and Optical Properties of Lead Tungstate Crystals

A. N. Vasiliev; Y.M. Goncharenko; A. M. Davidenko; A. A. Derevschikov; V.A. Kachanov; Yu. M. Melnick; A. P. Meschanin; N. G. Minaev; V. V. Mochalov; A. V. Ryazantsev; P. A. Semenov; A. V. Uzunian; A. E. Yakutin

The radiation hardness of a test batch of lead tungstate crystals grown by a new technology at the Bogoroditsk Technochemical Plant for the PANDA experiment has been measured. The optical properties of the crystals have been investigated at temperatures ranging from +20 to −20°C under irradiation with a 137Cs radionuclide source. The light yield in the crystal is seen to considerably increase with a decrease in its temperature. In addition, the loss of the crystal transparency under irradiation at low temperatures is higher than under irradiation at room temperature. As a result, at a fixed dose rate, the signal from the crystal at a negative temperature may be considerably greater than the signal at room temperature even if the accumulated dose is high.


Physics of Atomic Nuclei | 2005

Single-spin asymmetry of inclusive neutral-pion production in pp∩ interactions at 70 GeV in the region -0.4 < xf < -0.1

A. N. Vasiliev; V. N. Grishin; A. M. Davidenko; A.A. Derevshchikov; Yu. A. Matulenko; Yu. M. Mel’nik; A.P. Meshchanin; V. V. Mochalov; L. V. Nogach; S. B. Nurushev; A. F. Prudkoglyad; P. A. Semenov; L. F. Soloviev; V.L. Solovianov; V. Yu. Khodyrev; K. E. Shestermanov; A. E. Yakutin; N. S. Borisov; V. N. Matafonov; A. B. Neganov; Yu. A. Plis; Yu. A. Usov; A. N. Fedorov; A. A. Lukhanin

For the kinematical region specified by the inequalities −0.4 < xF < −0.1 and 0.9 < pT < 2.5 GeV/c, the results are presented that were obtained by experimentally determining the single-spin asymmetry of inclusive neutral-pion production in the reaction p + p↑ → π0 + X at 70 GeV. According to these results, the asymmetry is close to zero in the region −0.2 < xF < −0.1 and grows in magnitude with decreasing xF, amounting to (−10.6 ± 3.2)% for −0.4


Physics of Atomic Nuclei | 2004

Single-spin asymmetry of inclusive π0-meson production in 40-GeV pion interactions with a polarized target in the target-fragmentation region

A. N. Vasiliev; V. N. Grishin; A. A. Derevschikov; V. I. Kravtsov; Yu. A. Matulenko; V. A. Medvedev; Yu. M. Melnik; A. P. Meschanin; D. A. Morozov; V. V. Mochalov; A. I. Mysnik; L. V. Nogach; S. B. Nurushev; A. F. Prudkoglyad; P. A. Semenov; L. F. Soloviev; V.L. Solovianov; M. N. Ukhanov; Yu. V. Kharlov; V. Yu. Khodyrev; B. V. Chujko; K. E. Shestermanov; A. E. Yakutin; N. S. Borisov; V. N. Matafonov; A. B. Neganov; Yu. A. Plis; Yu. A. Usov; A. N. Fedorov; A. A. Lukhanin

Data on the single-spin asymmetry (AN) of inclusive π0 production in 40-GeV pion interactions with a polarized target, π−+↑→π0+X, are presented for the target-fragmentation region. The result is AN=(−13.8±3.8)% for −0.8<xF<−0.4 and 1<pT<2 GeV/c and is compatible with zero for −0.4<xF<−0.1 and 0.5<pT<1.5 GeV/c. At a π0 momentum of about 1.7 GeV/c in the c.m. frame, the asymmetry becomes nonzero both in the central and in the target-fragmentation region. The behavior of the asymmetry is similar to that observed in the beam-fragmentation region of the E-704 (FNAL, 200 GeV) and STAR (BNL, 20 TeV) experiments, which employed a polarized proton beam.


Instruments and Experimental Techniques | 2010

Measuring the momentum dispersion of a proton beam extracted from the U-70 accelerator by channeling

V. V. Mochalov; A. N. Vasiliev; A. V. Ryazantsev; P. A. Semenov; Y. Goncharenko; A. A. Derevschikov; A. S. Konstantinov; V. A. Maisheev; Yu. A. Matulenko; Yu. M. Melnick; A. V. Minchenko; A. P. Meschanin; D. A. Morozov; L. F. Soloviev; A. E. Yakutin; Yu.A. Chesnokov

The momentum dispersion of the proton beam extracted from the vacuum chamber of the U-70 accelerator by channeling was measured for the first time. At an 80-mrad bending angle of the Si single crystal, the following beam parameters were attained: an intensity of 107 protons/s for 1012 protons/s hitting the crystal, momentum dispersion of the beam Δp/p = 0.13%, and a background particle admixture of 0.03% or less.


Physics of Atomic Nuclei | 2004

Searches for single-spin asymmetry in the inclusive production of neutral pions in the central region at a proton beam energy of 70-GeV

A. N. Vasiliev; V. N. Grishin; A. M. Davidenko; A. A. Derevschikov; Yu. A. Matulenko; Yu. M. Melnik; A. P. Meschanin; V. V. Mochalov; L. V. Nogach; S. B. Nurushev; A. F. Prudkoglyad; P. A. Semenov; L. F. Soloviev; V.L. Solovianov; V. Yu. Khodyrev; K. E. Shestermanov; A. E. Yakutin; N. S. Borisov; V. N. Matafonov; A. B. Neganov; Yu. A. Plis; Yu. A. Usov; A. N. Fedorov; A. A. Lukhanin

Results are presented that were obtained by measuring single-spin asymmetry in the inclusive production of neutral pions in the reaction p+p ↑→ π0+X at xF≈0. A beam of 70-GeV protons was extracted directly from the vacuum chamber of the accelerator by means of a bent single crystal. For transverse momenta in the range 1.0<pT<3.0 GeV/c, the single-spin asymmetry independently measured by two detectors is zero within the errors. This result is in agreement with Fermilab data obtained at 200 GeV, but it is at odds with CERN data measured at 24 GeV.


Physics of Atomic Nuclei | 2014

Analyzing Power in the Reaction p + p └ → π 0 + X in the polarized-target fragmentation region at an energy of 50 GeV

V. V. Abramov; N. I. Belikov; A. N. Vasiliev; Y. Goncharenko; V. N. Grishin; A. M. Davydenko; A.A. Derevshchikov; V. A. Kormilitsyn; Yu. M. Melnik; A.P. Meshchanin; N. G. Minaev; D. A. Morozov; V. V. Mochalov; L. V. Nogach; S. B. Nurushev; A. F. Prudkoglyad; S. V. Ryzhikov; A. V. Ryazantsev; P. A. Semenov; L. F. Soloviev; A. E. Yakutin; N. A. Bazhanov; N. S. Borisov; A. B. Lazarev; A. B. Neganov; Yu. A. Plis; Yu. A. Usov; A. N. Fedorov; O. N. Shchevelev; A. A. Belyaev

The results obtained by measuring, at the U-70 accelerator in Protvino, the single-spin asymmetry AN in the reaction p + p└ → π0 + X at a beam energy of 50 GeV in the Feynman variable range of −0.6 < xF < −0.1 are presented. The asymmetry AN is close to zero at small |xF| and grows in magnitude with |xF|, reaching 6.4% in the region of |xF| > 0.25. The results of these measurements agree with data of the E704 experiment on the asymmetry of π0 mesons at the Fermi National Accelerator Laboratory in the region of polarized-beam fragmentation and with the results of measurements in the region of polarized-target fragmentation that were performed in Protvino by using a 40-GeV π−-meson beam and a 70-GeV proton beam.

Collaboration


Dive into the A. E. Yakutin's collaboration.

Top Co-Authors

Avatar

V. V. Mochalov

Kharkov Institute of Physics and Technology

View shared research outputs
Top Co-Authors

Avatar

A. N. Vasiliev

Kharkov Institute of Physics and Technology

View shared research outputs
Top Co-Authors

Avatar

A. M. Davidenko

Kharkov Institute of Physics and Technology

View shared research outputs
Top Co-Authors

Avatar

A. P. Meschanin

Kharkov Institute of Physics and Technology

View shared research outputs
Top Co-Authors

Avatar

P. A. Semenov

Kharkov Institute of Physics and Technology

View shared research outputs
Top Co-Authors

Avatar

L. F. Soloviev

Kharkov Institute of Physics and Technology

View shared research outputs
Top Co-Authors

Avatar

A. A. Derevschikov

Kharkov Institute of Physics and Technology

View shared research outputs
Top Co-Authors

Avatar

L. V. Nogach

Kharkov Institute of Physics and Technology

View shared research outputs
Top Co-Authors

Avatar

V. N. Grishin

Kharkov Institute of Physics and Technology

View shared research outputs
Top Co-Authors

Avatar

D. A. Morozov

Kharkov Institute of Physics and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge