Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Erikson is active.

Publication


Featured researches published by A. Erikson.


Astronomy and Astrophysics | 2009

The CoRoT-7 planetary system: two orbiting super-Earths

D. Queloz; F. Bouchy; C. Moutou; A. Hatzes; G. Hébrard; R. Alonso; M. Auvergne; A. Baglin; Mauro Barbieri; P. Barge; Willy Benz; P. Bordé; Hans J. Deeg; M. Deleuil; R. Dvorak; A. Erikson; S. Ferraz Mello; M. Fridlund; D. Gandolfi; M. Gillon; E. W. Guenther; Tristan Guillot; L. Jorda; M. Hartmann; H. Lammer; A. Léger; A. Llebaria; C. Lovis; Pierre Magain; Michel Mayor

We report on an intensive observational campaign carried out with HARPS at the 3.6 m telescope at La Silla on the star CoRoT-7. Additional simultaneous photometric measurements carried out with the Euler Swiss telescope have demonstrated that the observed radial velocity variations are dominated by rotational modulation from cool spots on the stellar surface. Several approaches were used to extract the radial velocity signal of the planet(s) from the stellar activity signal. First, a simple pre-whitening procedure was employed to find and subsequently remove periodic signals from the complex frequency structure of the radial velocity data. The dominant frequency in the power spectrum was found at 23 days, which corresponds to the rotation period of CoRoT-7. The 0.8535 day period of CoRoT-7b planetary candidate was detected with an amplitude of 3.3 m s −1 . Most other frequencies, some with amplitudes larger than the CoRoT-7b signal, are most likely associated with activity. A second approach used harmonic decomposition of the rotational period and up to the first three harmonics to filter out the activity signal from radial velocity variations caused by orbiting planets. After correcting the radial velocity data for activity, two periodic signals are detected: the CoRoT-7b transit period and a second one with a period of 3.69 days and an amplitude of 4 m s −1 . This second signal was also found in the pre-whitening analysis. We attribute the second signal to a second, more remote planet CoRoT-7c . The orbital solution of both planets is compatible with circular orbits. The mass of CoRoT-7b is 4.8 ± 0. 8( M⊕) and that of CoRoT-7c is 8.4 ± 0. 9( M⊕), assuming both planets are on coplanar orbits. We also investigated the false positive scenario of a blend by a faint stellar binary, and this may be rejected by the stability of the bisector on a nightly scale. According to their masses both planets belong to the super-Earth planet category. The average density of CoRoT-7b is ρ = 5.6 ± 1. 3gc m −3 , similar to the Earth. The CoRoT-7 planetary system provides us with the first insight into the physical nature of short period super-Earth planets recently detected by radial velocity surveys. These planets may be denser than Neptune and therefore likely made of rocks like the Earth, or a mix of water ice and rocks.


Astronomy and Astrophysics | 2013

Transiting exoplanets from the CoRoT space mission - XXIV. CoRoT-25b and CoRoT-26b: two low-density giant planets

J. M. Almenara; F. Bouchy; P. Gaulme; M. Deleuil; M. Havel; D. Gandolfi; Hans J. Deeg; G. Wuchterl; T. Guillot; B. Gardes; T. Pasternacki; S. Aigrain; Roi Alonso; M. Auvergne; A. Baglin; A. S. Bonomo; P. Bordé; J. Cabrera; S. Carpano; William D. Cochran; Sz. Csizmadia; C. Damiani; R. F. Díaz; R. Dvorak; Michael Endl; A. Erikson; S. Ferraz-Mello; M. Fridlund; G. Hébrard; Michaël Gillon

We report the discovery of two transiting exoplanets, CoRoT-25b and CoRoT-26b, both of low density, one of which is in the Saturn mass-regime. For each star, ground-based complementary observations through optical photometry and radial velocity measurements secured the planetary nature of the transiting body and allowed us to fully characterize them. For CoRoT-25b we found a planetary mass of 0.27 similar to 0.04 M-Jup, a radius of 1.08(-0.10)(+0.3) R-Jup and hence a mean density of 0.15(-0.06)(+ 0.15) g cm(-3). The planet orbits an F9 mainsequence star in a 4.86-day period, that has a V magnitude of 15.0, solar metallicity, and an age of 4.5(-2.0) (+1.8)-Gyr. CoRoT-26b orbits a slightly evolved G5 star of 9.06 +/- 1.5-Gyr age in a 4.20-day period that has solar metallicity and a V magnitude of 15.8. With a mass of 0.52 +/- 0.05 MJup, a radius of 1.26(-0.07)(+0.13) R-Jup, and a mean density of 0.28(-0.07)(+0.09) g cm(-3), it belongs to the low-mass hot-Jupiter population. Planetary evolution models allowed us to estimate a core mass of a few tens of Earth mass for the two planets with heavy-element mass fractions of 0.52(-0.15)(+0.08) and 0.26(-0.08)(+0.05), respectively, assuming that a small fraction of the incoming flux is dissipated at the center of the planet. In addition, these models indicate that CoRoT-26b is anomalously large compared with what standard models could account for, indicating that dissipation from stellar heating could cause this size.


Astronomy and Astrophysics | 2008

Transiting exoplanets from the CoRoT space mission II. CoRoT-Exo-2b: A transiting planet around an active G star

Ricardo J. Alonso; M. Auvergne; A. Baglin; M. Ollivier; Claire Moutou; D. Rouan; Hans J. Deeg; S. Aigrain; J. M. Almenara; M. Barbieri; P. Barge; Willy Benz; P. Bordé; F. Bouchy; R. De La Reza; M. Deleuil; R. Dvorak; A. Erikson; M. Fridlund; M. Gillon; P. Gondoin; Tristan Guillot; A. Hatzes; G. Hébrard; P. Kabath; L. Jorda; H. Lammer; A. Léger; A. Llebaria; B. Loeillet

Context. The CoRoT mission, a pioneer in exoplanet searches from space, has completed its first 150 days of continuous observations of ∼12 000 stars in the galactic plane. An analysis of the raw data identifies the most promising candidates and triggers the ground-based follow-up. Aims. We report on the discovery of the transiting planet CoRoT-Exo-2b, with a period of 1.743 days, and characterize its main parameters. Methods. We filter the CoRoT raw light curve of cosmic impacts, orbital residuals, and low frequency signals from the star. The folded light curve of 78 transits is fitted to a model to obtain the main parameters. Radial velocity data obtained with the SOPHIE, CORALIE and HARPS spectrographs are combined to characterize the system. The 2.5 min binned phase-folded light curve is affected by the effect of sucessive occultations of stellar active regions by the planet, and the dispersion in the out of transit part reaches a level of 1.09 × 10 −4 in flux units. Results. We derive a radius for the planet of 1.465 ± 0.029 RJup and a mass of 3.31 ± 0.16 MJup, corresponding to a density of 1.31 ± 0.04 g/cm 3 . The large radius of CoRoT-Exo-2b cannot be explained by current models of evolution of irradiated planets.


Astronomy and Astrophysics | 2008

Transiting exoplanets from the CoRoT space mission I - CoRoT-Exo-1b: a low-density short-period planet around a G0V star

P. Barge; A. Baglin; M. Auvergne; H. Rauer; A. Léger; J. Schneider; Frederic Pont; S. Aigrain; J. M. Almenara; Ricardo J. Alonso; M. Barbieri; P. Bordé; F. Bouchy; Hans J. Deeg; R. De La Reza; M. Deleuil; R. Dvorak; A. Erikson; M. Fridlund; M. Gillon; P. Gondoin; Tristan Guillot; A. Hatzes; G. Hébrard; L. Jorda; P. Kabath; Helmut Lammer; A. Llebaria; B. Loeillet; Pierre Magain

Context. The pioneer space mission for photometric planet searches, CoRoT, steadily monitors about 12,000 stars in each of its fields of view; it is able to detect transit candidates early in the processing of the data and before the end of a run. Aims. We report the detection of the first planet discovered by CoRoT and characterizing it with the help of follow-up observations. Methods. Raw data were filtered from outliers and residuals at the orbital period of the satellite. The orbital parameters and the radius of the planet were estimated by best fitting the phase folded light curve with 34 successive transits. Doppler measurements with the SOPHIE spectrograph permitted us to secure the detection and to estimate the planet mass. Results. The accuracy of the data is very high with a dispersion in the 2.17 min binned phase-folded light curve that does not exceed 3.10-4 in flux unit. The planet orbits a mildly metal-poor G0V star of magnitude V=13.6 in 1.5 days. The estimated mass and radius of the star are 0.95+-0.15Msun and 1.11+-0.05Rsun. We find the planet has a radius of 1.49+-0.08Rjup, a mass of 1.03+-0.12Mjup, and a particularly low mean density of 0.38 +-0.05g cm-3.


Astronomy and Astrophysics | 2008

Transiting exoplanets from the CoRoT space mission III. The spectroscopic transit of CoRoT-Exo-2b with SOPHIE and HARPS

F. Bouchy; D. Queloz; M. Deleuil; B. Loeillet; A. Hatzes; S. Aigrain; R. Alonso; M. Auvergne; A. Baglin; P. Barge; Willy Benz; P. Bordé; Hans J. Deeg; R. De La Reza; R. Dvorak; A. Erikson; M. Fridlund; P. Gondoin; Tristan Guillot; G. Hébrard; L. Jorda; H. Lammer; A. Léger; Antoine Llebaria; Pierre Magain; Michel Mayor; Claire Moutou; M. Ollivier; M. Pätzold; F. Pepe

We report on the spectroscopic transit of the massive hot-Jupiter CoRoT-Exo-2b observed with the high-precision spectrographs SOPHIE and HARPS. By modeling the radial velocity anomaly occurring during the transit due to the Rossiter-McLaughlin (RM) effect, we determine the sky-projected angle between the stellar spin and the planetary orbital axis to be close to zero lambda=7.2+-4.5 deg, and we secure the planetary nature of CoRoT-Exo-2b. We discuss the influence of the stellar activity on the RM modeling. Spectral analysis of the parent star from HARPS spectra are presented.


Nature | 2010

A transiting giant planet with a temperature between 250 K and 430 K

Hans J. Deeg; Claire Moutou; A. Erikson; Sz. Csizmadia; B. Tingley; P. Barge; H. Bruntt; M. Havel; S. Aigrain; J. M. Almenara; R. Alonso; M. Auvergne; A. Baglin; M. Barbieri; Willy Benz; A. S. Bonomo; P. Bordé; F. Bouchy; J. Cabrera; L. Carone; S. Carpano; David R. Ciardi; M. Deleuil; R. Dvorak; S. Ferraz-Mello; M. Fridlund; D. Gandolfi; J.C. Gazzano; Michaël Gillon; P. Gondoin

Of the over 400 known exoplanets, there are about 70 planets that transit their central star, a situation that permits the derivation of their basic parameters and facilitates investigations of their atmospheres. Some short-period planets, including the first terrestrial exoplanet (CoRoT-7b), have been discovered using a space mission designed to find smaller and more distant planets than can be seen from the ground. Here we report transit observations of CoRoT-9b, which orbits with a period of 95.274 days on a low eccentricity of 0.11 ± 0.04 around a solar-like star. Its periastron distance of 0.36 astronomical units is by far the largest of all transiting planets, yielding a ‘temperate’ photospheric temperature estimated to be between 250 and 430 K. Unlike previously known transiting planets, the present size of CoRoT-9b should not have been affected by tidal heat dissipation processes. Indeed, the planet is found to be well described by standard evolution models with an inferred interior composition consistent with that of Jupiter and Saturn.


Astronomy and Astrophysics | 2011

Transiting exoplanets from the CoRoT space mission - XV. CoRoT-15b: a brown-dwarf transiting companion

F. Bouchy; M. Deleuil; Tristan Guillot; S. Aigrain; L. Carone; William D. Cochran; J. M. Almenara; R. Alonso; M. Auvergne; A. Baglin; P. Barge; A. S. Bonomo; P. Bordé; Szilard Csizmadia; K. De Bondt; H. J. Deeg; Rodrigo F. Díaz; R. Dvorak; Michael Endl; A. Erikson; S. Ferraz-Mello; M. Fridlund; D. Gandolfi; J -C Gazzano; N. P. Gibson; Michaël Gillon; E. W. Guenther; A. Hatzes; M. Havel; G. Hébrard

We report the discovery by the CoRoT space mission of a transiting brown dwarf orbiting a F7V star with an orbital period of 3.06 days. CoRoT-15b has a radius of 1.12 +0.30 ―0.15 R Jup and a mass of 63.3 ± 4.1 M Jup , and is thus the second transiting companion lying in the theoretical mass domain of brown dwarfs. CoRoT-15b is either very young or inflated compared to standard evolution models, a situation similar to that of M-dwarf stars orbiting close to solar-type stars. Spectroscopic constraints and an analysis of the lightcurve imply a spin period in the range 2.9-3.1 days for the central star, which is compatible with a double-synchronisation of the system.


Astronomy and Astrophysics | 2013

The effect of stellar limb darkening values on the accuracy of the planet radii derived from photometric transit observations

Sz. Csizmadia; T. Pasternacki; C. Dreyer; J. Cabrera; A. Erikson; H. Rauer

Context. The radius of an exoplanet is one of its most important parameters. Studies of planetary interiors and their evolution require 1% precision in the radius determination. Transiting exoplanets offer a unique oppurtunity to measure the radius of exoplanets in stellar units. These radius measurements and their precision are strongly affected by our knowledge of limb darkening. Aims. We study how the precision of the exoplanet radius determination is affected by our present knowledge of limb darkening in two cases: when we fix the limb darkening coefficients and when we adjust them. We also investigate the effects of spots in one-colour photometry. Methods. We study the effect of limb darkening on the planetary radius determination both via analytical expressions and by numerical experiments. We also compare some of the existing limb darkening tables. When stellar spots affect the fit, we replace the limb darkening coefficients, calculated for the unspotted cases, with effective limb darkening coefficients to describe the effect of the spots. Results. There are two important cases. (1) When one fixes the limb darkening values according to some theoretical predictions, the inconsistencies of the tables do not allow us to reach accuracy in the planetary radius of better than 1−10% (depending on the impact parameter) if the host star’s surface effective temperature is higher than 5000 K. Below 5000 K the radius ratio determination may contain even 20% error. (2) When one allows adjustment of the limb darkening coefficients, the a/Rs ratio, the planet-to-stellar radius ratio, and the impact parameter can be determined with sufficient accuracy (<1%), if the signal-to-noise ratio is high enough. However, the presence of stellar spots and faculae can destroy the agreement between the limb darkening tables and the fitted limb darkening coefficients, but this does not affect the precision of the planet radius determination. We also find that it is necessary to fit the contamination factor, too. Conclusions. We conclude that the present inconsistencies of theoretical stellar limb darkening tables suggests one should not fix the limb darkening coefficients. When one allows them to be adjusted, then the planet radius, impact parameter, and the a/Rs can be obtained with the required precision.


Astronomy and Astrophysics | 2008

Transiting exoplanets from the CoRoT space mission IV. CoRoT-Exo-4b : a transiting planet in a 9.2 day synchronous orbit

S. Aigrain; A. Collier Cameron; M. Ollivier; F. Pont; L. Jorda; J. M. Almenara; Ricardo J. Alonso; P. Barge; P. Bordé; F. Bouchy; H. Deeg; R. de la Reza; M. Deleuil; R. Dvorak; A. Erikson; M. Fridlund; P. Gondoin; Michaël Gillon; Tristan Guillot; A. Hatzes; H. Lammer; A. Lanza; A. Léger; A. Llebaria; Pierre Magain; Tsevi Mazeh; C. Moutou; M. Paetzold; Céline Pinte; D. Queloz

CoRoT, the first space-based transit search, provides ultra-high precision light curves with continuous time-sampling over periods, of up to 5 months. This allows the detection of transiting planets with relatively long periods, and the simultaneous study of the host stars photometric variability. In this letter, we report on the discovery of the transiting giant planet CoRoT-Exo-4b and use the CoRoT light curve to perform a detailed analysis of the transit and to determine the stellar rotation period. The CoRoT light curve was pre-processed to remove outliers and correct for orbital residuals and artefacts due to hot pixels on the detector. After removing stellar variability around each transit, the transit light curve was analysed to determine the transit parameters. A discrete auto-correlation function method was used to derive the rotation period of the star from the out-of-transit light curve. We derive periods for the planets orbit and stars rotation of 9.20205 +/- 0.00037 and 8.87 +/- 1.12 days respectively, consistent with a synchronised system. We also derive the inclination, i = 90.00 -0.085 +0.000 in degrees, the ratio of the orbital distance to the stellar radius, a/R_s = 17.36 -0.25 +0.05, and the planet to star radius ratio R_p/R_s = 0.1047 -0.0022 +0.0041. We discuss briefly the coincidence between the orbital period of the planet and the stellar rotation period and its possible implications for the systems migration and star-planet interaction history.


Astronomy and Astrophysics | 2005

Comparative blind test of five planetary transit detection algorithms on realistic synthetic light curves

Claire Moutou; F. Pont; P. Barge; Suzanne Aigrain; M. Auvergne; D. Blouin; R. Cautain; A. Erikson; V. Guis; P. Guterman; M. J. Irwin; A. Lanza; D. Queloz; H. Rauer; H. Voss; Shay Zucker

Because photometric surveys of exoplanet transits are very promising sources of future discoveries, many algorithms are being developed to detect transit signals in stellar light curves. This paper compares such algorithms for the next generation of space-based transit detection surveys like CoRoT, Kepler, and Eddington. Five independent analyses of a thousand synthetic light curves are presented. The light curves were produced with an end-to-end instrument simulator and include stellar micro-variability and a varied sample of stellar and planetary transits diluted within a much larger set of light curves. The results show that different algorithms perform quite differently, with varying degrees of success in detecting real transits and avoiding false positives. We also find that the detection algorithm alone does not make all the difference, as the way the light curves are filtered and detrended beforehand also has a strong impact on the detection limit and on the false alarm rate. The microvariability of sun-like stars is a limiting factor only in extreme cases, when the fluctuation amplitudes are large and the star is faint. In the majority of cases it does not prevent detection of planetary transits. The most sensitive analysis is performed with periodic box-shaped detection filters. False positives are method-dependent, which should allow reduction of their detection rate in real surveys. Background eclipsing binaries are wrongly identified as planetary transits in most cases, a result which confirms that contamination by background stars is the main limiting factor. With parameters simulating the CoRoT mission, our detection test indicates that the smallest detectable planet radius is on the order of 2 Earth radii for a 10-day orbital period planet around a K0 dwarf.

Collaboration


Dive into the A. Erikson's collaboration.

Top Co-Authors

Avatar

J. Cabrera

German Aerospace Center

View shared research outputs
Top Co-Authors

Avatar

A. Hatzes

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

M. Fridlund

European Space Research and Technology Centre

View shared research outputs
Top Co-Authors

Avatar

H. Rauer

German Aerospace Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Alonso

University of La Laguna

View shared research outputs
Top Co-Authors

Avatar

D. Gandolfi

European Space Research and Technology Centre

View shared research outputs
Top Co-Authors

Avatar

E. W. Guenther

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Hans J. Deeg

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge