Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Fraser is active.

Publication


Featured researches published by A. Fraser.


Nature Geoscience | 2013

Three decades of global methane sources and sinks

Stefanie Kirschke; P. Bousquet; Philippe Ciais; Marielle Saunois; Josep G. Canadell; E. J. Dlugokencky; P. Bergamaschi; D. Bergmann; D. R. Blake; Lori Bruhwiler; Philip Cameron-Smith; Simona Castaldi; F. Chevallier; Liang Feng; A. Fraser; Martin Heimann; E. L. Hodson; Sander Houweling; B. Josse; P. J. Fraser; P. B. Krummel; Jean-Francois Lamarque; R. L. Langenfelds; Corinne Le Quéré; Vaishali Naik; Simon O'Doherty; Paul I. Palmer; I. Pison; David A. Plummer; Benjamin Poulter

Methane is an important greenhouse gas, responsible for about 20% of the warming induced by long-lived greenhouse gases since pre-industrial times. By reacting with hydroxyl radicals, methane reduces the oxidizing capacity of the atmosphere and generates ozone in the troposphere. Although most sources and sinks of methane have been identified, their relative contributions to atmospheric methane levels are highly uncertain. As such, the factors responsible for the observed stabilization of atmospheric methane levels in the early 2000s, and the renewed rise after 2006, remain unclear. Here, we construct decadal budgets for methane sources and sinks between 1980 and 2010, using a combination of atmospheric measurements and results from chemical transport models, ecosystem models, climate chemistry models and inventories of anthropogenic emissions. The resultant budgets suggest that data-driven approaches and ecosystem models overestimate total natural emissions. We build three contrasting emission scenarios-which differ in fossil fuel and microbial emissions-to explain the decadal variability in atmospheric methane levels detected, here and in previous studies, since 1985. Although uncertainties in emission trends do not allow definitive conclusions to be drawn, we show that the observed stabilization of methane levels between 1999 and 2006 can potentially be explained by decreasing-to-stable fossil fuel emissions, combined with stable-to-increasing microbial emissions. We show that a rise in natural wetland emissions and fossil fuel emissions probably accounts for the renewed increase in global methane levels after 2006, although the relative contribution of these two sources remains uncertain.


Science | 2010

Large-Scale Controls of Methanogenesis Inferred from Methane and Gravity Spaceborne Data

A. Anthony Bloom; Paul I. Palmer; A. Fraser; David S. Reay; Christian Frankenberg

Measuring Methanogenesis After carbon dioxide, methane is the second most important greenhouse gas, and an important species in terms of its role in atmospheric chemistry. The sources and sinks of methane, particularly the natural ones, are too poorly quantified, however, even to explain why the decades-long, steady increase of its concentration in the atmosphere was interrupted between 1999 and 2006. Bloom et al. (p. 322) use a combination of satellite data, which indicate water table depth and surface temperature, and atmospheric methane concentrations to determine the location and strength of methane emissions from wetlands, the largest natural global source. The constraints placed on these sources should help to improve predictions of how climate change will affect wet-land emissions of methane. Satellite measurements allow the strength of wetland emissions of methane to be determined. Wetlands are the largest individual source of methane (CH4), but the magnitude and distribution of this source are poorly understood on continental scales. We isolated the wetland and rice paddy contributions to spaceborne CH4 measurements over 2003–2005 using satellite observations of gravity anomalies, a proxy for water-table depth Γ, and surface temperature analyses TS. We find that tropical and higher-latitude CH4 variations are largely described by Γ and TS variations, respectively. Our work suggests that tropical wetlands contribute 52 to 58% of global emissions, with the remainder coming from the extra-tropics, 2% of which is from Arctic latitudes. We estimate a 7% rise in wetland CH4 emissions over 2003–2007, due to warming of mid-latitude and Arctic wetland regions, which we find is consistent with recent changes in atmospheric CH4.


Geophysical Research Letters | 2011

Methane observations from the Greenhouse Gases Observing SATellite: comparison to ground-based TCCON data and model calculations

Robert Parker; Hartmut Boesch; Austin Cogan; A. Fraser; Liang Feng; Paul I. Palmer; Janina Messerschmidt; Nicholas M Deutscher; David W. T. Griffith; Justus Notholt; Paul O. Wennberg; Debra Wunch

We report new short-wave infrared (SWIR) column retrievals of atmospheric methane (X_(CH4)) from the Japanese Greenhouse Gases Observing SATellite (GOSAT) and compare observed spatial and temporal variations with correlative ground-based measurements from the Total Carbon Column Observing Network (TCCON) and with the global 3-D GEOS-Chem chemistry transport model. GOSAT X_(CH4) retrievals are compared with daily TCCON observations at six sites between April 2009 and July 2010 (Bialystok, Park Falls, Lamont, Orleans, Darwin and Wollongong). GOSAT reproduces the site-dependent seasonal cycles as observed by TCCON with correlations typically between 0.5 and 0.7 with an estimated single-sounding precision between 0.4–0.8%. We find a latitudinal-dependent difference between the X_(CH4) retrievals from GOSAT and TCCON which ranges from 17.9 ppb at the most northerly site (Bialystok) to −14.6 ppb at the site with the lowest latitude (Darwin). We estimate that the mean smoothing error difference included in the GOSAT to TCCON comparisons can account for 15.7 to 17.4 ppb for the northerly sites and for 1.1 ppb at the lowest latitude site. The GOSAT X_(CH4) retrievals agree well with the GEOS-Chem model on annual (August 2009 – July 2010) and monthly timescales, capturing over 80% of the zonal variability. Differences between model and observed X_(CH4) are found over key source regions such as Southeast Asia and central Africa which will be further investigated using a formal inverse model analysis.


Biogeosciences | 2012

Seasonal variability of tropical wetland CH 4 emissions: the role of the methanogen-available carbon pool

A. Anthony Bloom; Paul I. Palmer; A. Fraser; Dave Reay

Abstract. We develop a dynamic methanogen-available carbon model (DMCM) to quantify the role of the methanogen-available carbon pool in determining the spatial and temporal variability of tropical wetland CH4 emissions over seasonal timescales. We fit DMCM parameters to satellite observations of CH4 columns from SCIAMACHY CH4 and equivalent water height (EWH) from GRACE. Over the Amazon River basin we found substantial seasonal variability of this carbon pool (coefficient of variation = 28 ± 22%) and a rapid decay constant (φ = 0.017 day−1), in agreement with available laboratory measurements, suggesting that plant litter is likely the prominent methanogen carbon source over this region. Using the DMCM we derived global CH4 emissions for 2003–2009, and determined the resulting seasonal variability of atmospheric CH4 on a global scale using the GEOS-Chem atmospheric chemistry and transport model. First, we estimated that tropical emissions amounted to 111.1 Tg CH4 yr−1, of which 24% was emitted from Amazon wetlands. We estimated that annual tropical wetland emissions increased by 3.4 Tg CH4 yr−1 between 2003 and 2009. Second, we found that the model was able to reproduce the observed seasonal lag of CH4 concentrations peaking 1–3 months before peak EWH values. We also found that our estimates of CH4 emissions substantially improved the comparison between the model and observed CH4 surface concentrations (r = 0.9). We anticipate that these new insights from the DMCM represent a fundamental step in parameterising tropical wetland CH4 emissions and quantifying the seasonal variability and future trends of tropical CH4 emissions.


Science | 2012

Iconic CO2 Time Series at Risk

Sander Houweling; Bakr Badawy; D. F. Baker; Sourish Basu; Dmitry Belikov; P. Bergamaschi; P. Bousquet; Grégoire Broquet; Tim Butler; Josep G. Canadell; Jing M. Chen; F. Chevallier; Philippe Ciais; G. James Collatz; Scott Denning; Richard J. Engelen; I. G. Enting; Marc L. Fischer; A. Fraser; Christoph Gerbig; Manuel Gloor; Andrew R. Jacobson; Dylan B. A. Jones; Martin Heimann; Aslam Khalil; Thomas Kaminski; Prasad S. Kasibhatla; Nir Y. Krakauer; M. Krol; Takashi Maki

The steady rise in atmospheric long-lived greenhouse gas concentrations is the main driver of contemporary climate change. The Mauna Loa CO2 time series (1, 2), started by C. D. Keeling in 1958 and maintained today by the Scripps Institution of Oceanography and the Earth System Research Laboratory (ESRL) of NOAA, is iconic evidence of the effect of human-caused fossil fuel and land-use change emissions on the atmospheric increase of CO2. The continuity of such records depends critically on having stable funding, which is challenging to maintain in the context of 3- to 4-year research grant funding cycles (3), and is currently threatened by the financial crisis. The ESRL Global Monitoring Division maintains a network of about 100 surface and aircraft sites worldwide at which whole air samples are collected approximately every week for analysis of CO2, CH4, CO, halocarbons, and many other chemical species (4). This is complemented by high-frequency measurements at the Mauna Loa, Barrow, American Samoa, and South Pole observatories, and about 10 North American tall towers. The success of the NOAA program has inspired similar efforts in Europe (5), China (6), India (7), and Brazil (8), with the United Nations World Meteorological Organization providing guidance and precision requirements through the Global Atmosphere Watch program (9), but no funding. The data collected by NOAA and its worldwide partners have been used not only to demonstrate the unassailable rise of atmospheric greenhouse gas concentrations, but also to infer the magnitudes, locations, and times of surface-atmosphere exchange of those gases based on small concentration gradients between sites (10). Important findings from analysis of these records include the detection of a significant terrestrial carbon sink at northern mid-latitudes (11) and subsequent research aimed at identifying the mechanisms by which that sink must operate. Long-term, high-quality, atmospheric measurements are crucial for quantifying trends in greenhouse gas fluxes and attributing them to fossil fuel emissions, changes in land-use and management, or the response of natural land and ocean ecosystems to climate change and elevated CO2 concentrations. Greenhouse gas measurements along tall towers in the interior continents allow quantification of regional sources and sinks, which has a very high relevance for measuring the effectiveness of climate policy. NOAA ESRL provides measurements that are critical for the U.S. national security in that they provide independent verification and early warning of changing greenhouse gas emissions from countries involved in efforts to mitigate greenhouse gases. Dedicated carbon-observing satellites such as GOSAT and OCO-2 are needed to fill in the missing geographical information required for verification of carbon flux mitigation efforts. However, satellite retrievals do not yet provide sufficient information to deliver new constraints on surface fluxes, although quick progress is being made in this direction. In situ observations are crucial for anchoring space-borne measurements, for detecting potential biases of remote sensing techniques, and for providing continuity given the finite lifetime of satellites. Despite the growing importance of greenhouse gas observations to humanity, substantial budget cuts at NOAA have resulted in curtailment of our ability to observe and understand changes to the global carbon cycle. Already, a dozen surface flask-sampling sites have been removed from NOAAs operational network and aircraft profiling sites have been eliminated and reduced in frequency at the remaining NOAA sites. The planned growth in the tall tower program has stopped, and plans for closing some towers are being developed. The U.S. budget process in this election year, with the added risk of mandatory across-the-board cuts due to the 2011 Budget Control Act, foretells more bleak news for greenhouse gas monitoring at NOAA and could cause further retreat from the goal of recording ongoing changes in atmospheric composition. As scientists, we believe that preserving the continuity of these vital time series must remain a priority for U.S. carbon cycle research.


Science | 2012

Letter tot the editor: Iconic CO2 Time Series at Risk

Sander Houweling; Bakr Badawy; D. F. Baker; Sourish Basu; Dmitry Belikov; P. Bergamaschi; P. Bousquet; Grégoire Broquet; T. Butler; Josep G. Canadell; Jing M. Chen; F. Chevallier; Philippe Ciais; G.J. Collatz; S. Denning; Richard J. Engelen; I. G. Enting; Marc L. Fischer; A. Fraser; Christoph Gerbig; Manuel Gloor; Andrew R. Jacobson; Dylan B. A. Jones; Martin Heimann; Aslam Khalil; Thomas Kaminski; Prasad S. Kasibhatla; Nir Y. Krakauer; M. Krol; Takashi Maki

The steady rise in atmospheric long-lived greenhouse gas concentrations is the main driver of contemporary climate change. The Mauna Loa CO2 time series (1, 2), started by C. D. Keeling in 1958 and maintained today by the Scripps Institution of Oceanography and the Earth System Research Laboratory (ESRL) of NOAA, is iconic evidence of the effect of human-caused fossil fuel and land-use change emissions on the atmospheric increase of CO2. The continuity of such records depends critically on having stable funding, which is challenging to maintain in the context of 3- to 4-year research grant funding cycles (3), and is currently threatened by the financial crisis. The ESRL Global Monitoring Division maintains a network of about 100 surface and aircraft sites worldwide at which whole air samples are collected approximately every week for analysis of CO2, CH4, CO, halocarbons, and many other chemical species (4). This is complemented by high-frequency measurements at the Mauna Loa, Barrow, American Samoa, and South Pole observatories, and about 10 North American tall towers. The success of the NOAA program has inspired similar efforts in Europe (5), China (6), India (7), and Brazil (8), with the United Nations World Meteorological Organization providing guidance and precision requirements through the Global Atmosphere Watch program (9), but no funding. The data collected by NOAA and its worldwide partners have been used not only to demonstrate the unassailable rise of atmospheric greenhouse gas concentrations, but also to infer the magnitudes, locations, and times of surface-atmosphere exchange of those gases based on small concentration gradients between sites (10). Important findings from analysis of these records include the detection of a significant terrestrial carbon sink at northern mid-latitudes (11) and subsequent research aimed at identifying the mechanisms by which that sink must operate. Long-term, high-quality, atmospheric measurements are crucial for quantifying trends in greenhouse gas fluxes and attributing them to fossil fuel emissions, changes in land-use and management, or the response of natural land and ocean ecosystems to climate change and elevated CO2 concentrations. Greenhouse gas measurements along tall towers in the interior continents allow quantification of regional sources and sinks, which has a very high relevance for measuring the effectiveness of climate policy. NOAA ESRL provides measurements that are critical for the U.S. national security in that they provide independent verification and early warning of changing greenhouse gas emissions from countries involved in efforts to mitigate greenhouse gases. Dedicated carbon-observing satellites such as GOSAT and OCO-2 are needed to fill in the missing geographical information required for verification of carbon flux mitigation efforts. However, satellite retrievals do not yet provide sufficient information to deliver new constraints on surface fluxes, although quick progress is being made in this direction. In situ observations are crucial for anchoring space-borne measurements, for detecting potential biases of remote sensing techniques, and for providing continuity given the finite lifetime of satellites. Despite the growing importance of greenhouse gas observations to humanity, substantial budget cuts at NOAA have resulted in curtailment of our ability to observe and understand changes to the global carbon cycle. Already, a dozen surface flask-sampling sites have been removed from NOAAs operational network and aircraft profiling sites have been eliminated and reduced in frequency at the remaining NOAA sites. The planned growth in the tall tower program has stopped, and plans for closing some towers are being developed. The U.S. budget process in this election year, with the added risk of mandatory across-the-board cuts due to the 2011 Budget Control Act, foretells more bleak news for greenhouse gas monitoring at NOAA and could cause further retreat from the goal of recording ongoing changes in atmospheric composition. As scientists, we believe that preserving the continuity of these vital time series must remain a priority for U.S. carbon cycle research.


Science | 2012

Iconic CO2 Time Series at Risk - eScholarship

Sander Houweling; Bakr Badawy; D. F. Baker; Sourish Basu; Dmitry Belikov; P. Bergamaschi; P. Bousquet; Grégoire Broquet; T. Butler; Josep G. Canadell; Jing M. Chen; F. Chevallier; Philippe Ciais; G.J. Collatz; S. Denning; Richard J. Engelen; I. G. Enting; Marc L. Fischer; A. Fraser; Christoph Gerbig; Manuel Gloor; Andrew R. Jacobson; Dylan B. A. Jones; Martin Heimann; Aslam Khalil; Thomas Kaminski; Prasad S. Kasibhatla; Nir Y. Krakauer; M. Krol; Takashi Maki

The steady rise in atmospheric long-lived greenhouse gas concentrations is the main driver of contemporary climate change. The Mauna Loa CO2 time series (1, 2), started by C. D. Keeling in 1958 and maintained today by the Scripps Institution of Oceanography and the Earth System Research Laboratory (ESRL) of NOAA, is iconic evidence of the effect of human-caused fossil fuel and land-use change emissions on the atmospheric increase of CO2. The continuity of such records depends critically on having stable funding, which is challenging to maintain in the context of 3- to 4-year research grant funding cycles (3), and is currently threatened by the financial crisis. The ESRL Global Monitoring Division maintains a network of about 100 surface and aircraft sites worldwide at which whole air samples are collected approximately every week for analysis of CO2, CH4, CO, halocarbons, and many other chemical species (4). This is complemented by high-frequency measurements at the Mauna Loa, Barrow, American Samoa, and South Pole observatories, and about 10 North American tall towers. The success of the NOAA program has inspired similar efforts in Europe (5), China (6), India (7), and Brazil (8), with the United Nations World Meteorological Organization providing guidance and precision requirements through the Global Atmosphere Watch program (9), but no funding. The data collected by NOAA and its worldwide partners have been used not only to demonstrate the unassailable rise of atmospheric greenhouse gas concentrations, but also to infer the magnitudes, locations, and times of surface-atmosphere exchange of those gases based on small concentration gradients between sites (10). Important findings from analysis of these records include the detection of a significant terrestrial carbon sink at northern mid-latitudes (11) and subsequent research aimed at identifying the mechanisms by which that sink must operate. Long-term, high-quality, atmospheric measurements are crucial for quantifying trends in greenhouse gas fluxes and attributing them to fossil fuel emissions, changes in land-use and management, or the response of natural land and ocean ecosystems to climate change and elevated CO2 concentrations. Greenhouse gas measurements along tall towers in the interior continents allow quantification of regional sources and sinks, which has a very high relevance for measuring the effectiveness of climate policy. NOAA ESRL provides measurements that are critical for the U.S. national security in that they provide independent verification and early warning of changing greenhouse gas emissions from countries involved in efforts to mitigate greenhouse gases. Dedicated carbon-observing satellites such as GOSAT and OCO-2 are needed to fill in the missing geographical information required for verification of carbon flux mitigation efforts. However, satellite retrievals do not yet provide sufficient information to deliver new constraints on surface fluxes, although quick progress is being made in this direction. In situ observations are crucial for anchoring space-borne measurements, for detecting potential biases of remote sensing techniques, and for providing continuity given the finite lifetime of satellites. Despite the growing importance of greenhouse gas observations to humanity, substantial budget cuts at NOAA have resulted in curtailment of our ability to observe and understand changes to the global carbon cycle. Already, a dozen surface flask-sampling sites have been removed from NOAAs operational network and aircraft profiling sites have been eliminated and reduced in frequency at the remaining NOAA sites. The planned growth in the tall tower program has stopped, and plans for closing some towers are being developed. The U.S. budget process in this election year, with the added risk of mandatory across-the-board cuts due to the 2011 Budget Control Act, foretells more bleak news for greenhouse gas monitoring at NOAA and could cause further retreat from the goal of recording ongoing changes in atmospheric composition. As scientists, we believe that preserving the continuity of these vital time series must remain a priority for U.S. carbon cycle research.


Atmospheric Chemistry and Physics | 2011

TransCom model simulations of CH4 and related species: linking transport, surface flux and chemical loss with CH4 variability in the troposphere and lower stratosphere

Prabir K. Patra; Sander Houweling; M. Krol; P. Bousquet; Dmitry Belikov; D. Bergmann; H. Bian; Philip Cameron-Smith; M. P. Chipperfield; K. Corbin; A. Fortems-Cheiney; A. Fraser; Emanuel Gloor; Peter G. Hess; Akinori Ito; S. R. Kawa; R. M. Law; Zoe Loh; Shamil Maksyutov; Lei Meng; Paul I. Palmer; Ronald G. Prinn; Michael L. Rigby; Ryu Saito; C. Wilson


Atmospheric Chemistry and Physics | 2012

Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements

A. Fraser; Paul I. Palmer; Liang Feng; Hartmut Boesch; Austin Cogan; Robert Parker; E. J. Dlugokencky; P. J. Fraser; P. B. Krummel; R. L. Langenfelds; Simon O'Doherty; Ronald G. Prinn; L. P. Steele; M. van der Schoot; Ray F. Weiss


Geophysical Research Letters | 2005

Measurements of O3, NO2 and Temperature during the 2004 Canadian Arctic ACE Validation Campaign

Tobias Kerzenmacher; Kaley A. Walker; Kimberly Strong; Richard Berman; Peter F. Bernath; C. D. Boone; James R. Drummond; H. Fast; A. Fraser; Keith MacQuarrie; Clive Midwinter; Keeyoon Sung; C. Thomas McElroy; R. L. Mittermeier; Jennifer Walker; Hongjiang Wu

Collaboration


Dive into the A. Fraser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Florence Goutail

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

C. Adams

University of Toronto

View shared research outputs
Top Co-Authors

Avatar

K. Strong

University of Toronto

View shared research outputs
Top Co-Authors

Avatar

G. L. Manney

New Mexico Institute of Mining and Technology

View shared research outputs
Top Co-Authors

Avatar

W. H. Daffer

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

P. Bousquet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

C. D. Boone

University of Waterloo

View shared research outputs
Researchain Logo
Decentralizing Knowledge