Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Frazer is active.

Publication


Featured researches published by A. Frazer.


BMC Neuroscience | 2013

Induction of cortical plasticity and improved motor performance following unilateral and bilateral transcranial direct current stimulation of the primary motor cortex.

Dawson J. Kidgell; Alicia M. Goodwill; A. Frazer; Robin M. Daly

BackgroundTranscranial direct current stimulation (tDCS) is a non-invasive technique that modulates the excitability of neurons within the primary motor cortex (M1). Research shows that anodal-tDCS applied over the non-dominant M1 (i.e. unilateral stimulation) improves motor function of the non-dominant hand. Similarly, previous studies also show that applying cathodal tDCS over the dominant M1 improves motor function of the non-dominant hand, presumably by reducing interhemispheric inhibition. In the present study, one condition involved anodal-tDCS over the non-dominant M1 (unilateral stimulation) whilst a second condition involved applying cathodal-tDCS over the dominant M1 and anodal-tDCS over non-dominant M1 (bilateral stimulation) to determine if unilateral or bilateral stimulation differentially modulates motor function of the non-dominant hand. Using a randomized, cross-over design, 11 right-handed participants underwent three stimulation conditions: 1) unilateral stimulation, that involved anodal-tDCS applied over the non-dominant M1, 2) bilateral stimulation, whereby anodal-tDCS was applied over the non-dominant M1, and cathodal-tDCS over the dominant M1, and 3) sham stimulation. Transcranial magnetic stimulation (TMS) was performed before, immediately after, 30 and 60 minutes after stimulation to elucidate the neural mechanisms underlying any potential after-effects on motor performance. Motor function was evaluated by the Purdue pegboard test.ResultsThere were significant improvements in motor function following unilateral and bilateral stimulation when compared to sham stimulation at all-time points (all P < 0.05); however there was no difference across time points between unilateral and bilateral stimulation. There was also a similar significant increase in corticomotor excitability with both unilateral and bilateral stimulation immediately post, 30 minutes and 60 minutes compared to sham stimulation (all P < 0.05). Unilateral and bilateral stimulation reduced short-interval intracortical inhibition (SICI) immediately post and at 30 minutes (all P < 0.05), but returned to baseline in both conditions at 60 minutes. There was no difference between unilateral and bilateral stimulation for SICI (P > 0.05). Furthermore, changes in corticomotor plasticity were not related to changes in motor performance.ConclusionThese results indicate that tDCS induced behavioural changes in the non-dominant hand as a consequence of mechanisms associated with use-dependant cortical plasticity that is independent of the electrode arrangement.


Neuroscience | 2015

Increased cross-education of muscle strength and reduced corticospinal inhibition following eccentric strength training.

Dawson J. Kidgell; A. Frazer; Timo Rantalainen; Ilona Ruotsalainen; Juha P. Ahtiainen; Janne Avela; Glyn Howatson

AIM Strength training of one limb results in a substantial increase in the strength of the untrained limb, however, it remains unknown what the corticospinal responses are following either eccentric or concentric strength training and how this relates to the cross-education of strength. The aim of this study was to determine if eccentric or concentric unilateral strength training differentially modulates corticospinal excitability, inhibition and the cross-transfer of strength. METHODS Changes in contralateral (left limb) concentric strength, eccentric strength, motor-evoked potentials, short-interval intracortical inhibition and silent period durations were analyzed in groups of young adults who exercised the right wrist flexors with either eccentric (N=9) or concentric (N=9) contractions for 12 sessions over 4weeks. Control subjects (N=9) did not train. RESULTS Following training, both groups exhibited a significant strength gain in the trained limb (concentric group increased concentric strength by 64% and eccentric group increased eccentric strength by 62%) and the extent of the cross-transfer of strength was 28% and 47% for the concentric and eccentric group, respectively, which was different between groups (P=0.031). Transcranial magnetic stimulation revealed that eccentric training reduced intracortical inhibition (37%), silent period duration (15-27%) and increased corticospinal excitability (51%) compared to concentric training for the untrained limb (P=0.033). There was no change in the control group. CONCLUSION The results show that eccentric training uniquely modulates corticospinal excitability and inhibition of the untrained limb to a greater extent than concentric training. These findings suggest that unilateral eccentric contractions provide a greater stimulus in cross-education paradigms and should be an integral part of the rehabilitative process following unilateral injury to maximize the response.


European Journal of Applied Physiology | 2016

Cross-education of wrist extensor strength is not influenced by non-dominant training in right-handers

Timothy A. Coombs; A. Frazer; Deanna M. Horvath; Alan J. Pearce; Glyn Howatson; Dawson J. Kidgell

PurposeCross-education of strength has been proposed to be greater when completed by the dominant limb in right handed humans. We investigated whether the direction of cross-education of strength and corticospinal plasticity are different following right or left limb strength training in right-handed participants.MethodsChanges in strength, muscle thickness and indices of corticospinal plasticity were analyzed in 23 adults who were exposed to 3-weeks of either right-hand strength training (RHT) or left-hand strength training (LHT).ResultsMaximum voluntary wrist extensor strength in both the trained and untrained limb increased, irrespective of which limb was trained, with TMS revealing reduced corticospinal inhibition.ConclusionsCross-education of strength was not limited by which limb was trained and reduced corticospinal inhibition was not just confined to the trained limb. Critically, from a behavioral perspective, the magnitude of cross-education was not limited by which limb was trained.


European Journal of Neuroscience | 2017

Corticospinal responses following strength training: a systematic review and meta-analysis

Dawson J. Kidgell; Daniel R Bonanno; A. Frazer; Glyn Howatson; Alan J. Pearce

Strength training results in changes in skeletal muscle; however, changes in the central nervous system also occur. Over the last 15 years, non‐invasive brain stimulation techniques, such as transcranial magnetic stimulation, have been used to study the neural adaptations to strength training. This review explored the hypothesis that the neural adaptations to strength training may be due to changes in corticospinal excitability and inhibition and, such changes, contribute to the gain in strength following strength training. A systematic review, according to PRISMA guidelines, identified studies by database searching, hand‐searching and citation tracking between January 1990 and the first week of February 2017. Methodological quality of included studies was determined using the Downs and Black quality index. Data were synthesised and interpreted from meta‐analysis. Nineteen studies investigating the corticospinal responses following strength training were included. Meta‐analysis found that strength training increased strength [standardised mean difference (SMD) 0.84, 95% CI 0.55 to 1.13], decreased short‐interval intracortical inhibition (SMD −1.00, 95% CI −1.84 to −0.17) and decreased the cortical silent period (SMD −0.66, 95% CI −1.00 to −0.32). Strength training had no effect on motor threshold (SMD −0.12, 95% CI −0.49 to 0.25), but a borderline effect for increased corticospinal excitability (SMD 0.27, 95% CI 0.00 to 0.54). In untrained healthy participants, the corticospinal response to strength training is characterised by reduced intracortical inhibition and cortical silent period duration, rather than changes in corticospinal excitability. These data demonstrate that strength training targets intracortical inhibitory networks within the primary motor cortex (M1) and corticospinal pathway, characterising an important neural adaptation to strength training.


Applied Physiology, Nutrition, and Metabolism | 2018

Ipsilateral corticomotor responses are confined to the homologous muscle following cross-education of muscular strength

Joel Mason; A. Frazer; Deanna M. Horvath; Alan J. Pearce; Janne Avela; Glyn Howatson; Dawson J. Kidgell

Cross-education of strength occurs when strength-training 1 limb increases the strength of the untrained limb and is restricted to the untrained homologous muscle. Cortical circuits located ipsilateral to the trained limb might be involved. We used transcranial magnetic stimulation (TMS) to determine the corticomotor responses from the untrained homologous (biceps brachii) and nonhomologous (flexor carpi radialis) muscle following strength-training of the right elbow flexors. Motor evoked potentials were recorded from the untrained left biceps brachii and flexor carpi radialis during a submaximal contraction from 20 individuals (10 women, 10 men; aged 18-35 years; training group, n = 10; control group, n = 10) before and after 3 weeks of strength-training the right biceps brachii at 80% of 1-repetition maximum. Recruitment-curves for corticomotor excitability and inhibition of the untrained homologous and nonhomologous muscle were constructed and assessed by examining the area under the recruitment curve. Strength-training increased strength of the trained elbow flexors (29%), resulting in an 18% increase in contralateral strength of the untrained elbow flexors (P < 0.0001). The trained wrist flexors increased by 19%, resulting in a 12% increase in strength of the untrained wrist flexors (P = 0.005). TMS showed increased corticomotor excitability and decreased corticomotor inhibition for the untrained homologous muscle (P < 0.05); however, there were no changes in the untrained nonhomologous muscle (P > 0.05). These findings show that the cross-education of muscular strength is spatially distributed; however, the neural adaptations are confined to the motor pathway ipsilateral to the untrained homologous agonist.


Neuroscience | 2016

I-wave periodicity transcranial magnetic stimulation (iTMS) on corticospinal excitability. A systematic review of the literature.

Dawson J. Kidgell; Joel Mason; A. Frazer; Alan J. Pearce

Repetitive transcranial magnetic stimulation (rTMS) is an established technique that can modulate excitability of the motor cortex and corticospinal tract, beyond the duration of the stimulation itself. More recently, a newer repetitive technique, known as I-wave periodicity TMS (iTMS) has been purported to show increases in corticospinal excitability following at least 10 min of iTMS duration. The aim of this study was to use a systematic review to search the literature from January 2000 to October 2015 with regard to corticospinal outcomes following iTMS intervention. We also rated the quality of studies and assessed the risk of bias by applying the Downs and Black checklist and the Cochrane Collaboration Risk of Bias Tool respectively. From an initial yield of 144, 11 studies were included. Studies were found to be of moderate quality, however a high risk of bias was identified. Despite these issues, evidence from the studies presented in this review so far indicates that iTMS is effective in increasing corticospinal excitability. However, further studies are required from other groups to validate the findings to date. Additional research is required to reduce the variability in corticospinal excitability and also to functional outcomes along with corticospinal excitability following iTMS.


Muscle & Nerve | 2016

Anodal transcranial direct current stimulation of the motor cortex increases cortical voluntary activation and neural plasticity.

A. Frazer; Jacqueline Williams; Michael Spittles; Timo Rantalainen; Dawson J. Kidgell

Introduction: We examined the cumulative effect of 4 consecutive bouts of noninvasive brain stimulation on corticospinal plasticity and motor performance, and whether these responses were influenced by the brain‐derived neurotrophic factor (BDNF) polymorphism. Methods: In a randomized double‐blinded cross‐over design, changes in strength and indices of corticospinal plasticity were analyzed in 14 adults who were exposed to 4 consecutive sessions of anodal and sham transcranial direct current stimulation (tDCS). Participants also undertook a blood sample for BDNF genotyping (N = 13). Results: We observed a significant increase in isometric wrist flexor strength with transcranial magnetic stimulation revealing increased corticospinal excitability, decreased silent period duration, and increased cortical voluntary activation compared with sham tDCS. Conclusions: The results show that 4 consecutive sessions of anodal tDCS increased cortical voluntary activation manifested as an improvement in strength. Induction of corticospinal plasticity appears to be influenced by the BDNF polymorphism. Muscle Nerve 54: 903–913, 2016


European Journal of Applied Physiology | 2018

Determining the potential sites of neural adaptation to cross-education: implications for the cross-education of muscle strength

A. Frazer; Alan J. Pearce; Glyn Howatson; Kevin Thomas; Stuart Goodall; Dawson J. Kidgell

Cross-education describes the strength gain in the opposite, untrained limb following a unilateral strength training program. Since its discovery in 1894, several studies now confirm the existence of cross-education in contexts that involve voluntary dynamic contractions, eccentric contraction, electrical stimulation, whole-body vibration and, more recently, following mirror feedback training. Although many aspects of cross-education have been established, the mediating neural mechanisms remain unclear. Overall, the findings of this review show that the neural adaptations to cross-education of muscle strength most likely represent a continuum of change within the central nervous system that involves both structural and functional changes within cortical motor and non-motor regions. Such changes are likely to be the result of more subtle changes along the entire neuroaxis which include, increased corticospinal excitability, reduced cortical inhibition, reduced interhemispheric inhibition, changes in voluntary activation and new regions of cortical activation. However, there is a need to widen the breadth of research by employing several neurophysiological techniques (together) to better understand the potential mechanisms mediating cross-education. This fundamental step is required in order to better prescribe targeted and effective guidelines for the clinical practice of cross-education. There is a need to determine whether similar cortical responses also occur in clinical populations where, perhaps, the benefits of cross-education could be best observed.


European Journal of Applied Physiology | 2017

Cross-education of muscular strength is facilitated by homeostatic plasticity

A. Frazer; Jacqueline Williams; Michael Spittle; Dawson J. Kidgell


European Journal of Applied Physiology | 2017

Adaptations in corticospinal excitability and inhibition are not spatially confined to the agonist muscle following strength training

Joel Mason; A. Frazer; Deanna M. Horvath; Alan J. Pearce; Janne Avela; Glyn Howatson; Dawson J. Kidgell

Collaboration


Dive into the A. Frazer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan J. Pearce

Swinburne University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janne Avela

University of Jyväskylä

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge