Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A.G.M. Johansson is active.

Publication


Featured researches published by A.G.M. Johansson.


Psychoneuroendocrinology | 2008

Women with polycystic ovary syndrome are often depressed or anxious--a case control study.

Mattias Månsson; Jan Holte; Kerstin Landin-Wilhelmsen; Eva Dahlgren; A.G.M. Johansson; Mikael Landén

OBJECTIVE Polycystic ovary syndrome (PCOS) is a common hyperandrogenic endocrine disorder affecting women of fertile age. The aim of this study was to survey whether the rate of clinical psychiatric disorders in PCOS differs from the normal population. METHOD Women with PCOS (n=49) meeting the Rotterdam criteria for PCOS, and 49 age-matched controls identified from the population registry, were recruited. Trained clinicians used the MINI International Neuropsychiatric Interview to establish lifetime occurrence of Axis I DSM diagnoses. Serum-testosterone and sex hormone binding globulin were analyzed. RESULTS Women with PCOS had higher lifetime incidence of depressive episodes, social phobia, and eating disorders than controls. Suicide attempts were seven times more common in the PCOS group than in the controls. Current as well as lifetime use of antidepressants and anxiolytic drugs were more common in the PCOS group. CONCLUSIONS Previous studies have found that PCOS is associated with decreased quality of life and self-rated mental symptoms. This study demonstrates that PCOS is also linked to psychiatric syndromes as verified by structured clinical assessments. The clinical implication of this study is that clinicians treating women with PCOS should be aware that these women are a high risk group for common affective and anxiety disorders as well as suicide attempts.


BMC Psychiatry | 2013

Neurocognitive function in bipolar disorder: a comparison between bipolar I and II disorder and matched controls

Erik Pålsson; Clara Figueras; A.G.M. Johansson; Carl Johan Ekman; Björn Hultman; Josefin Östlind; Mikael Landén

BackgroundCognitive deficits have been documented in patients with bipolar disorder. Further, it has been suggested that the degree and type of cognitive impairment differ between bipolar I and bipolar II disorder, but data is conflicting and remains inconclusive. This study aimed to clarify the suggested differences in cognitive impairment between patients with bipolar I and II disorder in a relatively large, clinically stable sample while controlling for potential confounders.Methods67 patients with bipolar I disorder, 43 with bipolar II disorder, and 86 randomly selected population-based healthy controls were compared. A number of neuropsychological tests were administered, assessing verbal and visual memory and executive functions. Patients were in a stable phase during testing.ResultsPatients with bipolar type I and type II were cognitively impaired compared to healthy controls, but there were no statistically significant differences between the two subtypes. The strongest predictor of cognitive impairment within the patient group was current antipsychotic treatment.ConclusionsThe present study suggests that the type and degree of cognitive dysfunction is similar in bipolar I and II patients. Notably, treatment with antipsychotics - but not a history of psychosis - was associated with more severe cognitive impairment. Given that patients with bipolar I disorder are more likely to be on antipsychotic drugs, this might explain why some previous studies have found that patients with type I bipolar disorder are more cognitively impaired than those with type II.


Neuropsychopharmacology | 2013

Altered concentrations of amyloid precursor protein metabolites in the cerebrospinal fluid of patients with bipolar disorder.

Joel Jakobsson; Henrik Zetterberg; Kaj Blennow; Carl Johan Ekman; A.G.M. Johansson; Mikael Landén

Bipolar disorder is a psychiatric disorder characterized by recurrent episodes of mania/hypomania and depression. Progressive cognitive dysfunction such as impairments in executive function and verbal memory is common in euthymic bipolar patients. The cerebrospinal fluid has previously been used to study neurodegenerative processes in Alzheimer’s disease, from which changes in three core biomarkers have emerged as indicative of degeneration: amyloid β, total tau, and hyperphosphorylated tau. Here, neurodegeneration in bipolar disorder was investigated by assessing the association between bipolar disorder and cerebrospinal fluid biomarkers for neurodegenerative processes. Cerebrospinal fluid was obtained from 139 bipolar disorder patients and 71 healthy controls. Concentrations of total and phosphorylated tau, amyloid β1-42, amyloid β38/β40/β42, and the soluble forms of amyloid precursor protein were measured in patients vs controls. The concentrations of the soluble forms of amyloid precursor protein were significantly lower in bipolar patients compared with controls. The amyloid β42/amyloid β38 and the amyloid β42/amyloid β40 ratios were higher in bipolar patients than controls. There were no discernible differences in the concentrations of total/phosphorylated tau, amyloid β1-42, or amyloid β38/β40/β42. The concentrations of the biomarkers within the bipolar patient group were further associated with different ongoing medical treatments and diagnostic subgroups. The findings suggest that the amyloid precursor protein metabolism is altered in bipolar disorder. The results may have implications for the understanding of the pathophysiology of bipolar disorder and for the development of treatment strategies. Importantly, there were no signs of an Alzheimer-like neurodegenerative process among bipolar patients.


Psychiatry Research-neuroimaging | 2014

Blood-cerebrospinal fluid barrier dysfunction in patients with bipolar disorder in relation to antipsychotic treatment

Henrik Zetterberg; Joel Jakobsson; Mikael Redsäter; Ulf Andreasson; Erik Pålsson; Carl Johan Ekman; Carl Sellgren; A.G.M. Johansson; Kaj Blennow; Mikael Landén

Blood-cerebrospinal barrier (BCB) dysfunction has previously been shown in subjects with schizophrenia and depressed patients with attempted suicide. Bipolar disorder (BPD) shares clinical features with both these disorders, but it is unknown if the integrity of the BCB is altered also in BPD. To assess if BCB function in BPD we surveyed 134 mood-stabilized BPD patients and 86 healthy controls. Serum and cerebrospinal fluid (CSF) samples were collected and analyzed for albumin concentration by immunonephelometry. CSF/serum albumin ratio, an established measure of BCB function, was significantly elevated in BPD patients as compared to controls. After stratifying patients according to diagnostic subtype, BPD I patients had the highest CSF/serum albumin ratios. Moreover, BPD patients on antipsychotic treatment had higher CSF/serum albumin ratio than BPD patients on other treatments. When excluding BPD patients on antipsychotic treatment the difference in CSF/serum albumin ratio between the BPD and control groups disappeared. In conclusion, antipsychotic treatment in BPD is associated with elevated CSF/serum albumin ratio, tentatively as a sign of impaired BCB function. Whether this elevation is caused by antipsychotic treatment or is associated with a certain subtype of BPD, requiring antipsychotic treatment, remains to be determined.


Brain Behavior and Immunity | 2015

Increased cerebrospinal fluid interleukin-8 in bipolar disorder patients associated with lithium and antipsychotic treatment

Anniella Isgren; Joel Jakobsson; Erik Pålsson; Carl Johan Ekman; A.G.M. Johansson; Carl Sellgren; Kaj Blennow; Henrik Zetterberg; Mikael Landén

Inflammation has been linked to the pathophysiology of bipolar disorder based on studies of inflammation markers, such as cytokine concentrations, in plasma and serum samples from cases and controls. However, peripheral measurements of cytokines do not readily translate to immunological activity in the brain. The aim of the present study was to study brain immune and inflammatory activity. To this end, we analyzed cytokines in cerebrospinal fluid from 121 euthymic bipolar disorder patients and 71 age and sex matched control subjects. Concentrations of 11 different cytokines were determined using immunoassays. Cerebrospinal fluid IL-8 concentrations were significantly higher in patients as compared to controls. The other cytokines measured were only detectable in part of the sample. IL-8 concentrations were positively associated to lithium- and antipsychotic treatment. The findings might reflect immune aberrations in bipolar disorder, or be due to the effects of medication.


Neuropsychopharmacology | 2014

Elevated Concentrations of Neurofilament Light Chain in the Cerebrospinal Fluid of Bipolar Disorder Patients

Joel Jakobsson; Maria Bjerke; Carl Johan Ekman; Carl Sellgren; A.G.M. Johansson; Henrik Zetterberg; Kaj Blennow; Mikael Landén

Bipolar disorder (BD) is characterized by mood swings between manic and depressive states. The etiology and pathogenesis of BD is unclear, but many of the affected cognitive domains, as well as neuroanatomical abnormalities, resemble symptoms and signs of small vessel disease. In small vessel disease, cerebrospinal fluid (CSF) markers reflecting damages in different cell types and subcellular structures of the brain have been established. Hence, we hypothesized that CSF markers related to small vessel disease may also be applicable as biomarkers for BD. To investigate this hypothesis, we sampled CSF from 133 patients with BD and 86 healthy controls. The concentrations of neurofilament light chain (NF-L), myelin basic protein (MBP), S100B, and heart-type fatty acid binding protein (H-FABP) were measured in CSF and analyzed in relation to diagnosis, clinical characteristics, and ongoing medications. Hereby we found an elevation of the marker of subcortical axonal damage, NF-L, in bipolar subjects. We also identified positive associations between NF-L and treatment with atypical antipsychotics, MBP and lamotrigine, and H-FABP and lithium. These findings indicate axonal damage as an underlying neuropathological component of bipolar disorder, although the clinical value of elevated NF-L remains to be validated in follow-up studies. The associations between current medications and CSF brain injury markers might aid in the understanding of both therapeutic and adverse effects of these drugs.


Journal of Neuroinflammation | 2016

Electroconvulsive therapy suppresses the neurotoxic branch of the kynurenine pathway in treatment-resistant depressed patients

Lilly Schwieler; Martin Samuelsson; Mark A. Frye; Maria Bhat; Oscar Jungholm; A.G.M. Johansson; Mikael Landén; Carl Sellgren; Sophie Erhardt

BackgroundNeuroinflammation is increasingly recognized as contributing to the pathogenesis of depression. Key inflammatory markers as well as kynurenic acid (KYNA) and quinolinic acid (QUIN), both tryptophan metabolites, have been associated with depressive symptoms and suicidality. The aim of the present study is to investigate the peripheral concentration of cytokines and tryptophan and kynurenine metabolites in patients with unipolar treatment-resistant depression before and after electroconvulsive therapy (ECT), the most effective treatment for depression.MethodsCytokines in plasma from patients with major depressive disorder (MDD; n = 19) and healthy volunteers (n = 14) were analyzed with electrochemiluminescence detection. Tryptophan and kynurenine metabolites were detected with high-performance liquid chromatography (HPLC) and LC/MS. KYNA was analyzed in a second healthy control cohort (n = 22).ResultsPatients with MDD had increased plasma levels of interleukin (IL)-6 compared to healthy volunteers (P < 0.05). We also found an altered kynurenine metabolism in these patients displayed by decreased plasma levels of KYNA (P < 0.0001) as well as a significantly increased QUIN/KYNA ratio (P < 0.001). Plasma levels of tryptophan, kynurenine, and QUIN did not differ between patients and controls. Treatment with ECT was associated with a significant decrease in the plasma levels of tryptophan (P < 0.05), kynurenine (P < 0.01), and QUIN (P < 0.001), whereas plasma levels of KYNA did not change. The QUIN/KYNA ratio was found to significantly decrease in ECT-treated patients (P < 0.05). There was a significant inverse correlation between symptom severity and kynurenine levels at baseline (r = −0.67, P = 0.002).ConclusionsThis study confirms an imbalanced kynurenine pathway in MDD supporting the hypothesis of a netstimulation of N-methyl-d-aspartic acid (NMDA) receptors in the disorder. Treatment with ECT profoundly decreased QUIN, an NMDA-receptor agonist previously suggested to be implicated in the pathogenesis of depression, an effect that might have bearing for the good clinical outcome of ECT.


European Neuropsychopharmacology | 2012

Polymorphisms in AKR1C4 and HSD3B2 and differences in serum DHEAS and progesterone are associated with paranoid ideation during mania or hypomania in bipolar disorder

A.G.M. Johansson; Pernilla Nikamo; Martin Schalling; Mikael Landén

Paranoia is commonly a mood-incongruent psychotic symptom of mania which may be related to dopamine dysregulation. Progesterone and its metabolite allopregnanolone (ALLO) have been found in animals to antagonize the effects of dopamine. We therefore examined serum progesterone, its endogenous antagonist DHEAS and polymorphisms of the genes coding for certain steroidogenetic enzymes (AKR1C4, HSD3B2, and SRD5A1) in 64 males and 96 females with bipolar 1 or 2 disorder with or without paranoid ideation during mood elevation. Euthymic morning serum progesterone, DHEAS and cortisol concentrations were measured in males and in premenopausal women who were in follicular phase and not taking oral contraceptives. In women only, SNPs in AKR1C4 reduced the likelihood of having exhibited paranoid ideation by circa 60%. The haplotype of all 4 SNPs in the AKR1C4 gene reduced the risk of exhibiting paranoia by 80% (OR 0.19, 95% CI 0.06-0.61, p=0.05). A history of paranoid ideation was not, however, related to progesterone or DHEAS concentration. Serum DHEAS and progesterone concentrations were lower in men who had shown paranoid ideation during mania/hypomania compared with those who had not (F=7.30, p=0.006) however this was not coupled to polymorphisms in the selected genes. The ancestral G in rs4659174 in HSD3B2 was in men associated with a lower risk of paranoid ideation (likelihood ratio χ(2) 3.97, p=0.046, OR 0.31 (95% CI 0.10-0.96)) but did not correlate with hormone concentrations. Hence, gene variants in the steroidogenetic pathway and steroids concentration differences may be involved in the susceptibility to paranoia during mood elevation.


Journal of Affective Disorders | 2011

AKR1C4 gene variant associated with low euthymic serum progesterone and a history of mood irritability in males with bipolar disorder

A.G.M. Johansson; Pernilla Nikamo; Martin Schalling; Mikael Landén

BACKGROUND Irritable mood during mood elevation is common in bipolar disorder. The progesterone metabolite allopregnanolone (ALLO) has been implicated in other disorders presenting with irritability. This study aimed to test whether a history of manic/hypomanic irritability is associated with low serum progesterone levels; and whether single nucleotide polymorphisms (SNPs) in gene coding for steroidogenetic enzymes (HSD3B2, SRD5A1 and AKR1C4 were coupled to previous manic irritability and/or with serum progesterone concentrations. METHODS Morning serum progesterone concentrations during euthymic phase of bipolar illness types 1 and 2 were assessed in 71 males and 107 females. Previous manic/hypomanic irritability was assessed using the Affective Disorders Evaluation. Selected SNPs were analyzed: i) aldoketoreductase-type-4 (AKR1C4 - rs17306779, rs3829125, rs10904440, rs12762017, and rs11253048), ii) 3-β-hydroxysteroid-dehydrogenase (HSD3B2 - rs4659174, rs2854964, and rs3765948), iii) steroid-5-α-reductase (SRD5A1 - rs8192139, rs181807, rs3822430, and rs3736316). RESULTS In males, progesterone concentrations were lower in those who had shown manic/hypomanic irritability compared with nonirritable (F=7.05, p=0.0099). SNPs rs17306779, rs3829125, and rs10904440 were associated with manic/hypomanic irritability. A cystine to serine change at position 145 in AKR1C4 (rs3829125) was associated with lower serum progesterone (F=6.34, p=0.014). There were no associations in females. LIMITATIONS Relatively small sample sizes. CONCLUSION Low progesterone levels and a cystine to serine change at position 145 in AKR1C4 gene are associated with manic/hypomanic irritability in males. Given that the enzyme AKR1C4 has both dehydrogenating and reductive activities in the steroidogenetic pathway, a missense variation in the gene may predispose to manic/hypomanic irritability by altering the relationship between progesterone and ALLO concentrations in the brain.


Journal of Psychiatry & Neuroscience | 2013

Decreased cerebrospinal fluid secretogranin II concentrations in severe forms of bipolar disorder

Joel Jakobsson; Mats Stridsberg; Henrik Zetterberg; Kaj Blennow; Carl Johan Ekman; A.G.M. Johansson; Carl Sellgren; Mikael Landén

BACKGROUND Bipolar disorder is a common psychiatric mood disorder that is defined by recurrent episodes of abnormally elevated mood and depression. Progressive structural brain changes in individuals with bipolar disorder have been suggested to be associated with defects in the secretion of neurotrophic factors. We sought to assess how the regulated secretory pathway in the brain is affected in patients with bipolar disorder by measuring chromogranin B and secretogranin II, which are 2 cerebrospinal fluid (CSF) biological markers for this process. METHODS We measured the concentrations of chromogranin B (peptide 439-451) and secretogranin II (peptide 154-165) in the CSF of patients with well-defined bipolar disorder and healthy controls. The lifetime severity of bipolar disorder was rated using the Clinical Global Impression (CGI) scale. RESULTS We included 126 patients with bipolar disorder and 71 healthy controls in our analysis. Concentrations of secretogranin II were significantly lower in patients with bipolar disorder type I than in healthy controls. The reduction was most pronounced in patients with high CGI scores (i.e., severe disease). LIMITATIONS The cross-sectional design of the current study limits the ability to pinpoint the causalities behind the observed associations. CONCLUSION This study shows that the CSF marker secretogranin II has the potential to act as a biological marker for severe forms of bipolar disorder. Our findings indicate that patients with bipolar disorder possess defects in the regulatory secretory pathway, which may be of relevance to the progressive structural brain changes seen in those with severe forms of the disease.

Collaboration


Dive into the A.G.M. Johansson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erik Pålsson

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joel Jakobsson

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Kaj Blennow

Sahlgrenska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge