Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. G. R. Thomas is active.

Publication


Featured researches published by A. G. R. Thomas.


Nature | 2004

Monoenergetic beams of relativistic electrons from intense laser-plasma interactions

S. P. D. Mangles; C. D. Murphy; Z. Najmudin; A. G. R. Thomas; John Collier; A. E. Dangor; E. J. Divall; P. S. Foster; J. G. Gallacher; C. J. Hooker; D. A. Jaroszynski; A. J. Langley; W. B. Mori; P.A. Norreys; F. S. Tsung; R. Viskup; B. Walton; K. Krushelnick

High-power lasers that fit into a university-scale laboratory can now reach focused intensities of more than 1019 W cm-2 at high repetition rates. Such lasers are capable of producing beams of energetic electrons, protons and γ-rays. Relativistic electrons are generated through the breaking of large-amplitude relativistic plasma waves created in the wake of the laser pulse as it propagates through a plasma, or through a direct interaction between the laser field and the electrons in the plasma. However, the electron beams produced from previous laser–plasma experiments have a large energy spread, limiting their use for potential applications. Here we report high-resolution energy measurements of the electron beams produced from intense laser–plasma interactions, showing that—under particular plasma conditions—it is possible to generate beams of relativistic electrons with low divergence and a small energy spread (less than three per cent). The monoenergetic features were observed in the electron energy spectrum for plasma densities just above a threshold required for breaking of the plasma wave. These features were observed consistently in the electron spectrum, although the energy of the beam was observed to vary from shot to shot. If the issue of energy reproducibility can be addressed, it should be possible to generate ultrashort monoenergetic electron bunches of tunable energy, holding great promise for the future development of ‘table-top’ particle accelerators.


Nature Communications | 2015

Generation of neutral and high-density electron-positron pair plasmas in the laboratory

Gianluca Sarri; K. Poder; J. M. Cole; W. Schumaker; A. Di Piazza; Brian Reville; T. Dzelzainis; D. Doria; L. A. Gizzi; G. Grittani; S. Kar; Christoph H. Keitel; K. Krushelnick; S. Kuschel; S. P. D. Mangles; Z. Najmudin; N. Shukla; L. O. Silva; D. R. Symes; A. G. R. Thomas; M. Vargas; Jorge Vieira; M. Zepf

Electron–positron pair plasmas represent a unique state of matter, whereby there exists an intrinsic and complete symmetry between negatively charged (matter) and positively charged (antimatter) particles. These plasmas play a fundamental role in the dynamics of ultra-massive astrophysical objects and are believed to be associated with the emission of ultra-bright gamma-ray bursts. Despite extensive theoretical modelling, our knowledge of this state of matter is still speculative, owing to the extreme difficulty in recreating neutral matter–antimatter plasmas in the laboratory. Here we show that, by using a compact laser-driven setup, ion-free electron–positron plasmas with unique characteristics can be produced. Their charge neutrality (same amount of matter and antimatter), high-density and small divergence finally open up the possibility of studying electron–positron plasmas in controlled laboratory experiments.


Physics of Plasmas | 2010

Generation of GeV protons from 1 PW laser interaction with near critical density targets.

Stepan Bulanov; Valery Yu. Bychenkov; V. Chvykov; G. Kalinchenko; Dale W. Litzenberg; T. Matsuoka; A. G. R. Thomas; L. Willingale; V. Yanovsky; K. Krushelnick; Anatoly Maksimchuk

The propagation of ultraintense laser pulses through matter is connected with the generation of strong moving magnetic fields in the propagation channel as well as the formation of a thin ion filament along the axis of the channel. Upon exiting the plasma the magnetic field displaces the electrons at the back of the target, generating a quasistatic electric field that accelerates and collimates ions from the filament. Two dimensional particle-in-cell simulations show that a 1 PW laser pulse tightly focused on a near-critical density target is able to accelerate protons up to an energy of 1.3 GeV. Scaling laws and optimal conditions for proton acceleration are established considering the energy depletion of the laser pulse.


Physical Review Letters | 2013

Table-Top Laser-Based Source of Femtosecond, Collimated, Ultrarelativistic Positron Beams

Gianluca Sarri; W. Schumaker; A. Di Piazza; M. Vargas; B. Dromey; Mark E Dieckmann; V. Chvykov; Anatoly Maksimchuk; V. Yanovsky; Zhaohan He; B. Hou; John A. Nees; A. G. R. Thomas; Christoph H. Keitel; M. Zepf; K. Krushelnick

The generation of ultrarelativistic positron beams with short duration (τ(e+) ≃ 30  fs), small divergence (θ(e+) ≃ 3  mrad), and high density (n(e+) ≃ 10(14)-10(15)  cm(-3)) from a fully optical setup is reported. The detected positron beam propagates with a high-density electron beam and γ rays of similar spectral shape and peak energy, thus closely resembling the structure of an astrophysical leptonic jet. It is envisaged that this experimental evidence, besides the intrinsic relevance to laser-driven particle acceleration, may open the pathway for the small-scale study of astrophysical leptonic jets in the laboratory.


Physical Review Letters | 2010

Schwinger Limit Attainability with Extreme Power Lasers

Stepan Bulanov; Timur Zh. Esirkepov; A. G. R. Thomas; James Koga; S. V. Bulanov

High intensity colliding laser pulses can create abundant electron-positron pair plasma [A. R. Bell and J. G. Kirk, Phys. Rev. Lett. 101, 200403 (2008)], which can scatter the incoming electromagnetic waves. This process can prevent one from reaching the critical field of quantum electrodynamics at which vacuum breakdown and polarization occur. Considering the pairs are seeded by the Schwinger mechanism, it is shown that the effects of radiation friction and the electron-positron avalanche development in vacuum depend on the electromagnetic wave polarization. For circularly polarized colliding pulses, these effects dominate not only the particle motion but also the evolution of the pulses. For linearly polarized pulses, these effects are not as strong. There is an apparent analogy of these cases with circular and linear electron accelerators to the corresponding constraining and reduced roles of synchrotron radiation losses.


Physical Review Letters | 2007

Effect of laser-focusing conditions on propagation and monoenergetic electron production in laser-wakefield accelerators

A. G. R. Thomas; Z. Najmudin; S. P. D. Mangles; C. D. Murphy; A. E. Dangor; Christos Kamperidis; K. L. Lancaster; W. B. Mori; P. A. Norreys; W. Rozmus; K. Krushelnick

The effect of laser-focusing conditions on the evolution of relativistic plasma waves in laser-wakefield accelerators is studied both experimentally and with particle-in-cell simulations. For short focal-length (w_{0}<lambda_{p}) interactions, beam breakup prevents stable propagation of the pulse. High field gradients lead to nonlocalized phase injection of electrons, and thus broad energy spread beams. However, for long focal-length geometries (w_{0}>lambda_{p}), a single optical filament can capture the majority of the laser energy and self-guide over distances comparable to the dephasing length, even for these short pulses (ctau approximately lambda_{p}). This allows the wakefield to evolve to the correct shape for the production of the monoenergetic electron bunches, as measured in the experiment.


Physics of Plasmas | 2007

On the stability of laser wakefield electron accelerators in the monoenergetic regime

S. P. D. Mangles; A. G. R. Thomas; Olle Lundh; Filip Lindau; Malte C. Kaluza; Anders Persson; Claes-Göran Wahlström; K. Krushelnick; Z. Najmudin

The effects of plasma density and laser energy on the stability of laser produced monoenergetic electron beams are investigated. Fluctuations in the principal beam parameters, namely, electron energy, energy-spread, charge, and pointing, are demonstrated to be minimized at low densities. This improvement in stability is attributed to the reduced time for pulse evolution required before self-injection occurs; i.e., that the pulse is closest to the matched conditions for these densities. It is also observed that electrons are only consistently produced above a density-dependent energy threshold. These observations are consistent with there being a threshold intensity (a0≳3) required for the occurrence of self-injection after accounting for pulse compression.


Applied Physics Letters | 2011

X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator

S. Kneip; C. McGuffey; F. Dollar; M. S. Bloom; V. Chvykov; G. Kalintchenko; K. Krushelnick; Anatoly Maksimchuk; S. P. D. Mangles; T. Matsuoka; Z. Najmudin; C. A. J. Palmer; J. Schreiber; W. Schumaker; A. G. R. Thomas; V. Yanovsky

We show that x-rays from a recently demonstrated table top source of bright, ultrafast, coherent synchrotron radiation [Kneip et al., Nat. Phys. 6, 980 (2010)] can be applied to phase contrast imaging of biological specimens. Our scheme is based on focusing a high power short pulse laser in a tenuous gas jet, setting up a plasma wakefield accelerator that accelerates and wiggles electrons analogously to a conventional synchrotron, but on the centimeter rather than tens of meter scale. We use the scheme to record absorption and phase contrast images of a tetra fish, damselfly and yellow jacket, in particular highlighting the contrast enhancement achievable with the simple propagation technique of phase contrast imaging. Coherence and ultrafast pulse duration will allow for the study of various aspects of biomechanics.


Physics of Plasmas | 2006

Evidence of photon acceleration by laser wake fields

C. D. Murphy; R. Trines; Jorge Vieira; Albert Reitsma; R. Bingham; John Collier; E. J. Divall; P. S. Foster; C. J. Hooker; A. J. Langley; P.A. Norreys; Ricardo Fonseca; F. Fiuza; L. O. Silva; J. T. Mendonça; W. B. Mori; J. G. Gallacher; R. Viskup; D. A. Jaroszynski; S. P. D. Mangles; A. G. R. Thomas; K. Krushelnick; Z. Najmudin

Photon acceleration is the phenomenon whereby a light wave changes color when propagating through a medium whose index of refraction changes in time. This concept can be used to describe the spectral changes experienced by electromagnetic waves when they propagate in spatially and temporally varying plasmas. In this paper the detection of a large-amplitude laser-driven wake field is reported for the first time, demonstrating photon acceleration. Several features characteristic of photon acceleration in wake fields, such as splitting of the main spectral peak and asymmetries between the blueshift and redshift for large shifts, have been observed. The experiment is modeled using both a novel photon-kinetic code and a three-dimensional particle-in-cell code. In addition to the wide-ranging applications in the field of compact particle accelerators, the concept of wave kinetics can be applied to understanding phenomena in nonlinear optics, space physics, and fusion energy research.


Physical Review Special Topics-accelerators and Beams | 2012

Characterization of transverse beam emittance of electrons from a laser-plasma wakefield accelerator in the bubble regime using betatron x-ray radiation

S. Kneip; C. McGuffey; J. L. Martins; M. S. Bloom; V. Chvykov; F. Dollar; Ricardo Fonseca; S. Jolly; G. Kalintchenko; K. Krushelnick; A. Maksimchuk; S. P. D. Mangles; Z. Najmudin; C. A. J. Palmer; K. Ta Phuoc; W. Schumaker; L. O. Silva; Jorge Vieira; V. Yanovsky; A. G. R. Thomas

We propose and use a technique to measure the transverse emittance of a laser-wakefield accelerated beam of relativistic electrons. The technique is based on the simultaneous measurements of the electron beam divergence given by v(perpendicular to)/v(parallel to), the measured spectrum gamma, and the transverse electron bunch size in the bubble r(perpendicular to). The latter is obtained via the measurement of the source size of the x rays emitted by the accelerating electron bunch in the bubble. We measure a normalized rms beam transverse emittance <0.5 pi mm mrad as an upper limit for a spatially Gaussian, spectrally quasimonoenergetic electron beam with 230 MeV energy in agreement with numerical modeling and analytic theory in the bubble regime.

Collaboration


Dive into the A. G. R. Thomas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Z. Najmudin

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

V. Chvykov

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Dollar

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

V. Yanovsky

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar

C. McGuffey

University of Michigan

View shared research outputs
Researchain Logo
Decentralizing Knowledge