A. G. Rybkin
Saint Petersburg State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. G. Rybkin.
Nature Communications | 2012
D. Marchenko; A. Varykhalov; M. R. Scholz; Gustav Bihlmayer; E.I. Rashba; A. G. Rybkin; A. M. Shikin; O. Rader
Graphene in spintronics is predominantly considered for spin current leads of high performance due to weak intrinsic spin-orbit coupling of the graphene π electrons. Externally induced large spin-orbit coupling opens the possibility of using graphene in active elements of spintronic devices such as the Das-Datta spin field-effect transistor. Here we show that Au intercalation at the graphene-Ni interface creates a giant spin-orbit splitting (~100 meV) of the graphene Dirac cone up to the Fermi energy. Photoelectron spectroscopy reveals the hybridization with Au 5d states as the source for this giant splitting. An ab initio model of the system shows a Rashba-split spectrum around the Dirac point of graphene. A sharp graphene-Au interface at the equilibrium distance accounts for only ~10 meV spin-orbit splitting and enhancement is due to the Au atoms in the hollow position that get closer to graphene and do not break the sublattice symmetry.Graphene in spintronics [1] has so far primarily meant spin current leads of high performance because the intrinsic spin-orbit coupling of its π electrons is very weak [2–4]. If a large spin-orbit coupling could be created by a proximity effect, the material could also form active elements of a spintronic device such as the Das-Datta spin field-effect transistor [5], however, metal interfaces often compromise the band dispersion of massless Dirac fermions [6]. Our measurements show that Au intercalation at the graphene-Ni interface creates a giant spin-orbit splitting (∼ 100 meV) in the graphene Dirac cone up to the Fermi energy. Photoelectron spectroscopy reveals hybridization with Au5d states as the source for the giant spin-orbit splitting. An ab initio model of the system shows a Rashba-split dispersion with the analytically predicted gapless band topology around the Dirac point of graphene and indicates that a sharp graphene-Au interface at equilibrium distance will account for only ∼ 10 meV spin-orbit splitting. The ab initio calculations suggest an enhancement due to Au atoms that get closer to the graphene and do not violate the sublattice symmetry.
Nano Letters | 2015
D. Usachov; Alexander Fedorov; M. M. Otrokov; A. Chikina; Oleg Yu. Vilkov; Anatoly E. Petukhov; A. G. Rybkin; Yury M. Koroteev; E. V. Chulkov; V. K. Adamchuk; A. Grüneis; C. Laubschat; D. V. Vyalikh
With the discovery and first characterization of graphene, its potential for spintronic applications was recognized immediately. Since then, an active field of research has developed trying to overcome the practical hurdles. One of the most severe challenges is to find appropriate interfaces between graphene and ferromagnetic layers, which are granting efficient injection of spin-polarized electrons. Here, we show that graphene grown under appropriate conditions on Co(0001) demonstrates perfect structural properties and simultaneously exhibits highly spin-polarized charge carriers. The latter was conclusively proven by observation of a single-spin Dirac cone near the Fermi level. This was accomplished experimentally using spin- and angle-resolved photoelectron spectroscopy, and theoretically with density functional calculations. Our results demonstrate that the graphene/Co(0001) system represents an interesting candidate for applications in devices using the spin degree of freedom.
Applied Physics Letters | 2011
D. E. Marchenko; A. Varykhalov; A. G. Rybkin; A. M. Shikin; O. Rader
It has recently been demonstrated that pentacene can serve as protection layer for graphene on SiC preserving the unique E(k) band dispersion after exposure to atmosphere and subsequent annealing in vacuum. We confirm the stability of the ideal graphene band dispersion but without any protection layer. We demonstrate this by angle-resolved photoemission for graphene on Ni(111) intercalated by a Au monolayer. Exposure to air does not carbidize or oxidize the Ni substrate or open an apparent gap in the graphene. Its doping state is not affected and the Rashba-type spin-orbit effect on the graphene π state is preserved.
ACS Nano | 2015
D. Usachov; Alexander Fedorov; Anatoly E. Petukhov; Oleg Yu. Vilkov; A. G. Rybkin; M. M. Otrokov; A. Arnau; E. V. Chulkov; L. V. Yashina; Mani Farjam; V. K. Adamchuk; B. V. Senkovskiy; C. Laubschat; D. V. Vyalikh
Embedding foreign atoms or molecules in graphene has become the key approach in its functionalization and is intensively used for tuning its structural and electronic properties. Here, we present an efficient method based on chemical vapor deposition for large scale growth of boron-doped graphene (B-graphene) on Ni(111) and Co(0001) substrates using carborane molecules as the precursor. It is shown that up to 19 at. % of boron can be embedded in the graphene matrix and that a planar C-B sp(2) network is formed. It is resistant to air exposure and widely retains the electronic structure of graphene on metals. The large-scale and local structure of this material has been explored depending on boron content and substrate. By resolving individual impurities with scanning tunneling microscopy we have demonstrated the possibility for preferential substitution of carbon with boron in one of the graphene sublattices (unbalanced sublattice doping) at low doping level on the Ni(111) substrate. At high boron content the honeycomb lattice of B-graphene is strongly distorted, and therefore, it demonstrates no unballanced sublattice doping.
Nanotechnology | 2013
A A Rybkina; A. G. Rybkin; V. K. Adamchuk; D. E. Marchenko; A. Varykhalov; J Sánchez Barriga; A. M. Shikin
A modification of the contact of graphene with ferromagnetic electrodes in a model of the graphene spin filter allowing restoration of the graphene electronic structure is proposed. It is suggested for this aim to intercalate into the interface between the graphene and the ferromagnetic (Ni or Co) electrode a Au monolayer to block the strong interaction between the graphene and Ni (Co) and, thus, prevent destruction of the graphene electronic structure which evolves in direct contact of graphene with Ni (Co). It is also suggested to insert an additional buffer graphene monolayer with the size limited by that of the electrode between the main graphene sheet providing spin current transport and the Au/Ni electrode injecting the spin current. This will prevent the spin transport properties of graphene from influencing contact phenomena and eliminate pinning of the graphene electronic structure relative to the Fermi level of the metal, thus ensuring efficient outflow of injected electrons into the graphene. The role of the spin structure of the graphene/Au/Ni interface with enhanced spin-orbit splitting of graphene π states is also discussed, and its use is proposed for additional spin selection in the process of the electron excitation.
Physics of the Solid State | 2011
A. A. Popova; A. M. Shikin; A. G. Rybkin; D. E. Marchenko; O. Yu. Vilkov; Anna A. Makarova; A. Yu. Varykhalov; O. Rader
A study is reported of the role played by covalent interaction in the coupling of graphene formed on Ni(111) to the Ni substrate and after intercalation of Au and Cu monolayers underneath the graphene. Covalent interaction of the graphene π states with d states of the underlying metal (Ni, Au, Cu) has been shown to bring about noticeable distortion of the dispersion relations of the graphene electronic π states in the region of crossing with d states, which can be described in terms of avoided-crossing effects and formation of bonding and antibonding d-π states. The overall graphene coupling to a substrate is mediated by the energy and occupation of the hybridized states involved. Because graphene formed directly on the Ni(111) surface has only bonding-type occupied states, the coupling to the substrate is very strong. Interaction with intercalated Au and Cu layers makes occupation of states of the antibonding and bonding types comparable, which translates into a weak resultant overall coupling of graphene to the substrate. As a result, after intercalation of Au atoms, the electronic structure becomes similar to that of quasi-free-standing graphene, with linear dispersion of π states at the K point of the Brillouin zone and the Dirac point localized close to the Fermi level. Intercalation of Cu atoms under the graphene monolayer results, besides generation of covalent interaction, in a slight charge transport, with a partial occupation of the previously unoccupied π* states and the Dirac point shifted by 0.35 eV toward increasing binding energy.
Nano Letters | 2016
D. Usachov; Alexander Fedorov; Oleg Yu. Vilkov; Anatoly E. Petukhov; A. G. Rybkin; A. Ernst; M. M. Otrokov; E. V. Chulkov; Ilya I. Ogorodnikov; Mikhail V. Kuznetsov; L. V. Yashina; Elmar Yu. Kataev; Anna V. Erofeevskaya; Vladimir Yu. Voroshnin; V. K. Adamchuk; C. Laubschat; D. V. Vyalikh
The implementation of future graphene-based electronics is essentially restricted by the absence of a band gap in the electronic structure of graphene. Options of how to create a band gap in a reproducible and processing compatible manner are very limited at the moment. A promising approach for the graphene band gap engineering is to introduce a large-scale sublattice asymmetry. Using photoelectron diffraction and spectroscopy we have demonstrated a selective incorporation of boron impurities into only one of the two graphene sublattices. We have shown that in the well-oriented graphene on the Co(0001) surface the carbon atoms occupy two nonequivalent positions with respect to the Co lattice, namely top and hollow sites. Boron impurities embedded into the graphene lattice preferably occupy the hollow sites due to a site-specific interaction with the Co pattern. Our theoretical calculations predict that such boron-doped graphene possesses a band gap that can be precisely controlled by the dopant concentration. B-graphene with doping asymmetry is, thus, a novel material, which is worth considering as a good candidate for electronic applications.
Physics of the Solid State | 2015
E. V. Zhizhin; D. A. Pudikov; A. G. Rybkin; P. G. Ul’yanov; A. M. Shikin
The formation of graphene on the surface of a nickel thin film on a highly oriented pyrolytic graphite substrate has been investigated using the photoelectron spectroscopy methods. It has been shown that the formation of graphene occurs through the phase of surface nickel carbide with the Ni2C stoichiometry, which is formed already at a temperature of 180°C. During the subsequent heating, the nickel carbide phase transforms into a graphene monolayer strongly bound to the surface. All the phase transitions have been thoroughly analyzed in terms of the fine structure of the photoelectron lines. The surface morphology has been examined using atomic force microscopy, and the obtained data have been presented. It has been especially emphasized that the advantage of the studied method of a “solid-state” source of carbon is the possibility of the formation of graphene at lower temperatures (at least no higher than 280°C) as compared to the cracking of carbon-containing gases, which requires the temperature ranging from 400 to 500°C.
Applied Physics Letters | 2014
A. M. Shikin; A. A. Rybkina; A. G. Rybkin; I. I. Klimovskikh; P. N. Skirdkov; Konstantin A. Zvezdin; A. K. Zvezdin
Spin electronic structure of the Graphene/Pt interface has been investigated. A large induced spin-orbit splitting (∼80 meV) of graphene π states with formation of non-degenerated Dirac-cone spin states at the K¯-point of the Brillouin zone crossed with spin-polarized Pt 5d states at Fermi level was found. We show that this spin structure can be used as a spin current source in spintronic devices. By theoretical estimations and micromagnetic modeling based on the experimentally observed spin-orbit splitting, we demonstarte that the induced intrinsic magnetic field in such structure might be effectively used for induced remagnetization of the (Ni-Fe)-nanodots arranged atop the interface.
Semiconductors | 2017
V. Yu. Davydov; D. Yu. Usachov; S. P. Lebedev; A. N. Smirnov; V. S. Levitskii; I. A. Eliseyev; P. A. Alekseev; M. S. Dunaevskiy; O. Yu. Vilkov; A. G. Rybkin; A. A. Lebedev
The structural, chemical, and electronic properties of epitaxial graphene films grown by thermal decomposition of the Si-face of a semi-insulating 6H-SiC substrate in an argon environment are studied by Raman spectroscopy, atomic-force microscopy, the low-energy electron diffraction method, X-ray photoelectron spectroscopy, angle-resolved photoemission spectroscopy and X-ray absorption spectroscopy at the carbon K edge. It is shown that the results of a systematic integrated study make it possible to optimize the growth parameters and develop a reliable technology for the growth of high-quality single-layer graphene films with a small fraction of bilayer graphene inclusions.