Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Germanà is active.

Publication


Featured researches published by A. Germanà.


Journal of Anatomy | 2003

Neurotrophins and the immune system

José A. Vega; O. García-Suárez; Jonas Hannestad; M. Pérez-Pérez; A. Germanà

The neurotrophins are a family of polypeptide growth factors that are essential for the development and maintenance of the vertebrate nervous system. In recent years, data have emerged indicating that neurotrophins could have a broader role than their name might suggest. In particular, the putative role of NGF and its receptor TrkA in immune system homeostasis has become a much studied topic, whereas information on the other neurotrophins is scarce in this regard. This paper reviews what is known about the expression and possible functions of neurotrophins and their receptors in different immune tissues and cells, as well as recent data obtained from studies of transgenic mice in our laboratory. Results from studies to date support the idea that neurotrophins may regulate some immune functions. They also play an important role in the development of the thymus and in the survival of thymocytes.


Journal of Clinical Investigation | 2010

Autophagy is essential for mouse sense of balance

Guillermo Mariño; Álvaro F. Fernández; Sandra Cabrera; Yunxia W. Lundberg; Rubén Cabanillas; Francisco Rodríguez; Natalia Salvador-Montoliu; José A. Vega; A. Germanà; Antonio Fueyo; José M. P. Freije; Carlos López-Otín

Autophagy is an evolutionarily conserved process that is essential for cellular homeostasis and organismal viability in eukaryotes. However, the extent of its functions in higher-order processes of organismal physiology and behavior is still unknown. Here, we report that autophagy is essential for the maintenance of balance in mice and that its deficiency leads to severe balance disorders. We generated mice deficient in autophagin-1 protease (Atg4b) and showed that they had substantial systemic reduction of autophagic activity. Autophagy reduction occurred through defective proteolytic processing of the autophagosome component LC3 and its paralogs, which compromised the rate of autophagosome maturation. Despite their viability, Atg4b-null mice showed unusual patterns of behavior that are common features of inner ear pathologies. Consistent with this, Atg4b-null mice showed defects in the development of otoconia, organic calcium carbonate crystals essential for sense of balance (equilibrioception). Furthermore, these abnormalities were exacerbated in Atg5-/- mice, which completely lack the ability to perform autophagy, confirming that autophagic activity is necessary for otoconial biogenesis. Autophagy deficiency also led to impaired secretion and assembly of otoconial core proteins, thus hampering otoconial development. Taken together, these results describe an essential role for autophagy in inner ear development and equilibrioception and open new possibilities for understanding and treating human balance disorders, which are of growing relevance among the elderly population.


Journal of Neuroimmunology | 2000

TrkA is necessary for the normal development of the murine thymus.

Olivia García-Suárez; A. Germanà; Jonas Hannestad; E. Ciriaco; Rosalba Laurà; Javier Naves; I. Esteban; Inmaculada Silos-Santiago; José A. Vega

Nerve growth factor (NGF) and its signal-transducing receptor TrkA are expressed in the thymus. However, their possible role during thymic organogenesis is unknown. Here we analyze the thymus of trkA-kinase deficient 2-week-old mice. trkA-kinase +/+ and +/- mice had a normal thymus, whereas the thymus of trkA-kinase -/- mice showed lack of delimitation between the cortex and medulla, lower thymocyte density, and the presence of epithelial cell islands and numerous cysts lined with endodermal epithelium. The present results indicate that TrkA is necessary for the normal development of the thymus, and that its absence causes an arrest in the differentiation of endodermal epithelial cells. Whether this lack of differentiation has functional implication has yet to be determined.


Molecular and Cellular Biochemistry | 2007

The Trk tyrosine kinase inhibitor K252a regulates growth of lung adenocarcinomas

Pablo Perez-Pinera; T. Hernandez; Olivia García-Suárez; F. de Carlos; A. Germanà; M. E. Del Valle; Aurora Astudillo; J.A. Vega

The neurotrophin family of growth factors and their receptors support the survival of several neuronal and non-neuronal cell populations during embryonic development and adult life. Neurotrophins are also involved in malignant transformation. To seek the role of neurotrophin signaling in human lung cancer we studied the expression of neurotrophin receptors in human lung adenocarcinomas and investigated the effect of the neurotrophin receptor inhibitor K252a in A549 cell survival and colony formation ability in soft agar. We showed that human lung adenocarcinomas express TrkA and TrkB, but not TrkC; A549 cells, derived from a human lung adenocarcinoma, express mRNA transcripts encoding nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), TrkA, TrkB, and p75, and high protein levels of TrkA and TrkB. Stimulation of cells using NGF or BDNF activates the anti-apoptotic protein Akt. Interestingly, inhibition of neurotrophin receptor signaling using K252a prevents Akt activation in response to NGF or BDNF, induces apoptotic cell death, and diminishes the ability of A549 cells to growth in soft agar. The data suggest that neurotrophin signaling inhibition using k252a may be a valid therapy to treat patients with lung adenocarcinomas.


Brain Research | 2007

Differential distribution of S100 protein and calretinin in mechanosensory and chemosensory cells of adult zebrafish (Danio rerio).

A. Germanà; Simona Paruta; Germana P. Germanà; F. Javier Ochoa-Erena; G. Montalbano; Juan Cobo; José A. Vega

Calcium-binding proteins play a critical role in vertebrate sensory cells, and some of them have been detected in mechanosensory and chemosensory cells of bony and cartilaginous fishes. In this study immunohistochemistry and Western blot were used to investigate the occurrence and the distribution of S100 protein and calretinin in mechanosensory (neuromasts of the lateral line system; maculae and cristae ampullaris of the inner ear) as well as chemosensory (superficial and oral taste buds; olfactory epithelium) cells in adult zebrafish (Danio rerio). Specific protein bands with an estimated molecular weight of around 10 kDa and 30 kDa were detected by Western blot and were identified with S100 protein and calretinin, respectively. S100 protein and calretinin were observed segregated in mechanosensory and chemosensory cells, and the presence of S100 protein in a cell excluded that of calretinin, and vice versa. As a rule, the mechanosensory cells were S100 protein positive, whereas the chemosensory ones displayed calretinin immunoreactivity. Calretinin was also detected in nerve fibers supplying some of the investigated organs. In the olfactory epithelium, S100 protein immunoreactivity was present in the crypt olfactory sensory neurons, whereas calretinin immunoreactivity was widespread in olfactory sensory neurons and probably other olfactory cells. In this localization the co-expression of S100 protein and calretinin cannot be excluded. These results demonstrate the cell segregation of two specific calcium-binding proteins, and they enable to selectively label these cells by using easily reproducible immunohistochemical techniques associated to well-known antibodies.


Neuroscience Letters | 2004

S100 protein-like immunoreactivity in the crypt olfactory neurons of the adult zebrafish

A. Germanà; G. Montalbano; R. Laurà; E. Ciriaco; M. E. Del Valle; José A. Vega

The olfactory epithelium of some teleosts, including zebrafish, contains three types of olfactory sensory neurons. Because zebrafish has become an ideal model for the study of neurogenesis in the olfactory system, it is of capital importance the identification of specific markers for different neuronal populations. In this study we used immunohistochemistry to analyze the distribution of S100 protein-like in the adult zebrafish olfactory epithelium. Surprisingly, specific S100 protein-like immunostaining was detected exclusively in crypt neurons, whereas ciliated and microvillous neurons were not reactive, and the supporting glial cells as well. The pattern of immunostaining was exclusively cytoplasmic without apparent polarity within the soma, and the intensity of immunostaining was not related with the maturative stage of the neurons. The role of S100 protein in crypt olfactory neurons is unknown, although it is probably associated with the capacity of these cells to respond to chemical stimuli. In any case, it represents an excellent marker to identify crypt olfactory neurons in zebrafish.


Neuroscience Letters | 2008

Characterization of sensory deficits in TrkB knockout mice

Pablo Perez-Pinera; Olivia García-Suárez; A. Germanà; Belén Díaz-Esnal; F. de Carlos; I. Silos-Santiago; M. E. Del Valle; J. Cobo; J.A. Vega

The sensory deficit in TrkB deficient mice was evaluated by counting the neuronal loss in lumbar dorsal root ganglia (DRG), the absence of sensory receptors (cutaneous--associated to the hairy and glabrous skin - muscular and articular), and the percentage and size of the neurocalcin-positive DRG neurons (a calcium-binding protein which labels proprioceptive and mechanoceptive neurons). Mice lacking TrkB lost 32% of neurons, corresponding to the intermediate-sized and neurocalcin-positive ones. This neuronal lost was accomplished by the absence of Meissner corpuscles, and reduction of hair follicle-associated sensory nerve endings and Merkel cells. The mutation was without effect on Pacinian corpuscles, Golgis organs and muscle spindles. Present results further characterize the sensory deficit of the TrkB-/- mice demonstrating that the intermediate-sized neurons in lumbar DRG, as well as the cutaneous rapidly and slowly adapting sensory receptors connected to them, are under the control of TrkB for survival and differentiation. This study might serve as a baseline for future studies in experimentally induced neuropathies affecting TrkB positive DRG neurons and their peripheral targets, and to use TrkB ligands in the treatment of neuropathies in which cutaneous mechanoreceptors are primarily involved.


Journal of Neuroimmunology | 2002

Massive lymphocyte apoptosis in the thymus of functionally deficient TrkB mice

O Garcia-Suarez; M.A Blanco-Gelaz; M.L Lopez; A. Germanà; R. Cabo; B Dı́az-Esnal; Inmaculada Silos-Santiago; E. Ciriaco; J.A. Vega

The occurrence of TrkB in the murine thymus (15-day and 3-month old) was investigated by Northern blot, Western blot and immunohistochemistry. Furthermore, the thymus of 15-day-old mice carrying a non-functional mutation on trkB was analyzed. Both trkB mRNA and 145 kDa TrkB protein were detected. In addition, isolated lymphocytes and stromal cells also expressed this protein. The thymus of homozygous functionally TrkB-deficient animals showed structural and ultrastructural changes consistent with massive death of cortical lymphocytes, confirmed with TUNEL. Present results suggest a role for TrkB in maintaining the survival or preventing massive death of lymphocytes in the mammalian thymus.


Neuroscience Letters | 2004

Neurotrophin receptors in taste buds of adult zebrafish (Danio rerio)

A. Germanà; T. González-Martínez; S. Catania; R. Laurà; J. Cobo; E. Ciriaco; J.A. Vega

TrkB plays crucial roles in the development and maintenance of taste buds in mammals. In this study we investigated the presence and cell localization of Trks (TrkA, TrkB and TrkC) in taste buds of the zebrafish (Danio rerio) using Western blot and immunohistochemistry. Proteins of 140 and 145 kDa, identified as full-length TrkA and TrkB, were detected. Conversely, the anti-TrkC antibody recognized a protein lower than expected (100 kDa). In agreement with these results the sensory cells of taste buds, displayed TrkA- and TrkB-like, but not TrkC-like, immunoreactivity. TrkA and TrkB co-existed in the same taste buds, but remains to be clarified whether or not they are co-expressed in the same cells. Present results demonstrate that as for mammals neurotrophins might play a role in sensory cells of the teleostean taste buds.


Anatomia Histologia Embryologia | 2006

The Oral Cavity of the Adult Zebrafish (Danio rerio)

F. Abbate; G. Germanà; F. de Carlos; G. Montalbano; R. Laurà; M. Levanti; A. Germanà

The zebrafish is a common model for developmental studies including those regarding tooth, palate and tongue. Nevertheless, little information is available about the morphology of the oral cavity in this teleost, especially in adult animals. In this study we used light, scanning and transmission electron microscopy to describe in detail the morphology of the oral cavity of adult zebrafish. The oral cavity could be divided into three different zones: the outer containing the lips, the intermediate corresponding to the internal valves and the internal that corresponds to the tongue. In the upper and lower intermediate zones, there were semilunar shaped valves, more prominent in the upper part. The internal lower zones correspond to the palate and the tongue, which is an individualized structure filled with numerous transversal ridges. Both the intermediate and internal zones were covered by a stratified epithelium containing numerous mucous and rodlet cells. Present data provide the first description of the morphology and structure of the oral cavity in the adult zebrafish and might serve as a baseline for developmental studies of the oral cavity using this teleost as a model.

Collaboration


Dive into the A. Germanà's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Abbate

University of Messina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Laurà

University of Messina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge