A. Gutierrez
University of British Columbia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Gutierrez.
Nature | 2012
C. Amole; M. D. Ashkezari; M. Baquero-Ruiz; W. Bertsche; P. D. Bowe; E. Butler; A. Capra; C. L. Cesar; M. Charlton; A. Deller; P H Donnan; S. Eriksson; J. Fajans; T. Friesen; M. C. Fujiwara; D. R. Gill; A. Gutierrez; J. S. Hangst; W. N. Hardy; M. E. Hayden; A. J. Humphries; C. A. Isaac; Svante Jonsell; L. Kurchaninov; A. Little; N. Madsen; J. T. K. McKenna; S. Menary; S. C. Napoli; P. J. Nolan
The hydrogen atom is one of the most important and influential model systems in modern physics. Attempts to understand its spectrum are inextricably linked to the early history and development of quantum mechanics. The hydrogen atom’s stature lies in its simplicity and in the accuracy with which its spectrum can be measured and compared to theory. Today its spectrum remains a valuable tool for determining the values of fundamental constants and for challenging the limits of modern physics, including the validity of quantum electrodynamics and—by comparison with measurements on its antimatter counterpart, antihydrogen—the validity of CPT (charge conjugation, parity and time reversal) symmetry. Here we report spectroscopy of a pure antimatter atom, demonstrating resonant quantum transitions in antihydrogen. We have manipulated the internal spin state of antihydrogen atoms so as to induce magnetic resonance transitions between hyperfine levels of the positronic ground state. We used resonant microwave radiation to flip the spin of the positron in antihydrogen atoms that were magnetically trapped in the ALPHA apparatus. The spin flip causes trapped anti-atoms to be ejected from the trap. We look for evidence of resonant interaction by comparing the survival rate of trapped atoms irradiated with microwaves on-resonance to that of atoms subjected to microwaves that are off-resonance. In one variant of the experiment, we detect 23 atoms that survive in 110 trapping attempts with microwaves off-resonance (0.21 per attempt), and only two atoms that survive in 103 attempts with microwaves on-resonance (0.02 per attempt). We also describe the direct detection of the annihilation of antihydrogen atoms ejected by the microwaves.
Nature | 2017
M. Ahmadi; B. X. R. Alves; C. J. Baker; W. Bertsche; E. Butler; A. Capra; C. Carruth; C. L. Cesar; M. Charlton; S. Cohen; R. Collister; S. Eriksson; Andrew Evans; N. Evetts; J. Fajans; T. Friesen; M. C. Fujiwara; D. R. Gill; A. Gutierrez; J. S. Hangst; W. N. Hardy; M. E. Hayden; C. A. Isaac; Akizumi Ishida; M. A. Johnson; Steve Jones; S. Jonsell; L. Kurchaninov; N. Madsen; M. Mathers
The observation of hyperfine structure in atomic hydrogen by Rabi and co-workers and the measurement of the zero-field ground-state splitting at the level of seven parts in 1013 are important achievements of mid-twentieth-century physics. The work that led to these achievements also provided the first evidence for the anomalous magnetic moment of the electron, inspired Schwinger’s relativistic theory of quantum electrodynamics and gave rise to the hydrogen maser, which is a critical component of modern navigation, geo-positioning and very-long-baseline interferometry systems. Research at the Antiproton Decelerator at CERN by the ALPHA collaboration extends these enquiries into the antimatter sector. Recently, tools have been developed that enable studies of the hyperfine structure of antihydrogen—the antimatter counterpart of hydrogen. The goal of such studies is to search for any differences that might exist between this archetypal pair of atoms, and thereby to test the fundamental principles on which quantum field theory is constructed. Magnetic trapping of antihydrogen atoms provides a means of studying them by combining electromagnetic interaction with detection techniques that are unique to antimatter. Here we report the results of a microwave spectroscopy experiment in which we probe the response of antihydrogen over a controlled range of frequencies. The data reveal clear and distinct signatures of two allowed transitions, from which we obtain a direct, magnetic-field-independent measurement of the hyperfine splitting. From a set of trials involving 194 detected atoms, we determine a splitting of 1,420.4 ± 0.5 megahertz, consistent with expectations for atomic hydrogen at the level of four parts in 104. This observation of the detailed behaviour of a quantum transition in an atom of antihydrogen exemplifies tests of fundamental symmetries such as charge–parity–time in antimatter, and the techniques developed here will enable more-precise such tests.
Nature | 2016
M. Ahmadi; M. Baquero-Ruiz; W. Bertsche; E. Butler; A. Capra; C. Carruth; C. L. Cesar; M. Charlton; Andrew Emile Charman; S. Eriksson; L. T. Evans; N. Evetts; J. Fajans; T. Friesen; M. C. Fujiwara; D. R. Gill; A. Gutierrez; J. S. Hangst; W. N. Hardy; M. E. Hayden; C. A. Isaac; A. Ishida; Steve Jones; Svante Jonsell; L. Kurchaninov; N. Madsen; D. Maxwell; J. T. K. McKenna; S. Menary; J. M. Michan
Antimatter continues to intrigue physicists because of its apparent absence in the observable Universe. Current theory requires that matter and antimatter appeared in equal quantities after the Big Bang, but the Standard Model of particle physics offers no quantitative explanation for the apparent disappearance of half the Universe. It has recently become possible to study trapped atoms– of antihydrogen to search for possible, as yet unobserved, differences in the physical behaviour of matter and antimatter. Here we consider the charge neutrality of the antihydrogen atom. By applying stochastic acceleration to trapped antihydrogen atoms, we determine an experimental bound on the antihydrogen charge, Qe, of |Q| < 0.71 parts per billion (one standard deviation), in which e is the elementary charge. This bound is a factor of 20 less than that determined from the best previous measurement of the antihydrogen charge. The electrical charge of atoms and molecules of normal matter is known to be no greater than about 10−21e for a diverse range of species including H2, He and SF6. Charge–parity–time symmetry and quantum anomaly cancellation demand that the charge of antihydrogen be similarly small. Thus, our measurement constitutes an improved limit and a test of fundamental aspects of the Standard Model. If we assume charge superposition and use the best measured value of the antiproton charge, then we can place a new limit on the positron charge anomaly (the relative difference between the positron and elementary charge) of about one part per billion (one standard deviation), a 25-fold reduction compared to the current best measurement.
Physical Review Letters | 2011
G. B. Andresen; M. D. Ashkezari; M. Baquero-Ruiz; W. Bertsche; P. D. Bowe; E. Butler; C. L. Cesar; S. Chapman; M. Charlton; A. Deller; S. Eriksson; Joel Fajans; T. Friesen; M. C. Fujiwara; D. R. Gill; A. Gutierrez; J. S. Hangst; W. N. Hardy; M. E. Hayden; A. J. Humphries; R. Hydomako; Svante Jonsell; N. Madsen; S. Menary; P. J. Nolan; A. Olin; A. Povilus; P. Pusa; F. Robicheaux; E. Sarid
Charges in cold, multiple-species, non-neutral plasmas separate radially by mass, forming centrifugally separated states. Here, we report the first detailed measurements of such states in an electron-antiproton plasma, and the first observations of the separation dynamics in any centrifugally separated system. While the observed equilibrium states are expected and in agreement with theory, the equilibration time is approximately constant over a wide range of parameters, a surprising and as yet unexplained result. Electron-antiproton plasmas play a crucial role in antihydrogen trapping experiments.
New Journal of Physics | 2012
C. Amole; G. B. Andresen; M. D. Ashkezari; M. Baquero-Ruiz; W. Bertsche; E. Butler; C. L. Cesar; S. Chapman; M. Charlton; A. Deller; S. Eriksson; J. Fajans; T. Friesen; M. C. Fujiwara; D. R. Gill; A. Gutierrez; J. S. Hangst; W. N. Hardy; M. E. Hayden; A. J. Humphries; R. Hydomako; L. Kurchaninov; Svante Jonsell; N. Madsen; S. Menary; P. J. Nolan; K. Olchanski; A. Olin; A. Povilus; P. Pusa
Recently, antihydrogen atoms were trapped at CERN in a magnetic minimum (minimum-B) trap formed by superconducting octupole and mirror magnet coils. The trapped antiatoms were detected by rapidly turning off these magnets, thereby eliminating the magnetic minimum and releasing any antiatoms contained in the trap. Once released, these antiatoms quickly hit the trap wall, whereupon the positrons and antiprotons in the antiatoms annihilate. The antiproton annihilations produce easily detected signals; we used these signals to prove that we trapped antihydrogen. However, our technique could be confounded by mirror-trapped antiprotons, which would produce seemingly identical annihilation signals upon hitting the trap wall. In this paper, we discuss possible sources of mirror-trapped antiprotons and show that antihydrogen and antiprotons can be readily distinguished, often with the aid of applied electric fields, by analyzing the annihilation locations and times. We further discuss the general properties of antiproton and antihydrogen trajectories in this magnetic geometry, and reconstruct the antihydrogen energy distribution from the measured annihilation time history.
Physics of Plasmas | 2013
C. Amole; M. D. Ashkezari; M. Baquero-Ruiz; W. Bertsche; E. Butler; A. Capra; C. L. Cesar; M. Charlton; A. Deller; S. Eriksson; Joel Fajans; T. Friesen; M. C. Fujiwara; D. R. Gill; A. Gutierrez; J. S. Hangst; W. N. Hardy; M. E. Hayden; C. A. Isaac; Svante Jonsell; L. Kurchaninov; A. Little; N. Madsen; J. T. K. McKenna; S. Menary; S. C. Napoli; K. Olchanski; A. Olin; P. Pusa; C. Ø. Rasmussen
One of the goals of synthesizing and trapping antihydrogen is to study the validity of charge–parity–time symmetry through precision spectroscopy on the anti-atoms, but the trapping yield achieved in recent experiments must be significantly improved before this can be realized. Antihydrogen atoms are commonly produced by mixing antiprotons and positrons stored in a nested Penning-Malmberg trap, which was achieved in ALPHA by an autoresonant excitation of the antiprotons, injecting them into the positron plasma. In this work, a hybrid numerical model is developed to simulate antiproton and positron dynamics during the mixing process. The simulation is benchmarked against other numerical and analytic models, as well as experimental measurements. The autoresonant injection scheme and an alternative scheme are compared numerically over a range of plasma parameters which can be reached in current and upcoming antihydrogen experiments, and the latter scheme is seen to offer significant improvement in trapping y...
New Journal of Physics | 2014
C. Amole; M. D. Ashkezari; M. Baquero-Ruiz; W. Bertsche; E. Butler; A. Capra; C. L. Cesar; M. Charlton; A. Deller; N. Evetts; S. Eriksson; J. Fajans; T. Friesen; M. C. Fujiwara; D. R. Gill; A. Gutierrez; J. S. Hangst; W. N. Hardy; M. E. Hayden; C. A. Isaac; S. Jonsell; L. Kurchaninov; A. Little; N. Madsen; J. T. K. McKenna; S. Menary; Silvia C. Napoli; K. Olchanski; A. Olin; P. Pusa
We demonstrate a novel detection method for the cyclotron resonance frequency of an electron plasma in a Penning–Malmberg trap. With this technique, the electron plasma is used as an in situ diagnostic tool for the measurement of the static magnetic field and the microwave electric field in the trap. The cyclotron motion of the electron plasma is excited by microwave radiation and the temperature change of the plasma is measured non-destructively by monitoring the plasmas quadrupole mode frequency. The spatially resolved microwave electric field strength can be inferred from the plasma temperature change and the magnetic field is found through the cyclotron resonance frequency. These measurements were used extensively in the recently reported demonstration of resonant quantum interactions with antihydrogen.
Journal of Instrumentation | 2012
G. B. Andresen; M. D. Ashkezari; M. Baquero-Ruiz; W. Bertsche; P. D. Bowe; E. Butler; C. L. Cesar; S. Chapman; M. Charlton; A. Deller; S. Eriksson; J. Fajans; T. Friesen; M. C. Fujiwara; D. R. Gill; A. Gutierrez; J. S. Hangst; W. N. Hardy; M. E. Hayden; A. J. Humphries; R. Hydomako; M. J. Jenkins; Svante Jonsell; L. V. Jørgensen; L. Kurchaninov; N. Madsen; J. T. K. McKenna; S. Menary; P. J. Nolan; K. Olchanski
ALPHA is one of the experiments situated at CERNs Antiproton Decelerator (AD). A Silicon Vertex Detector (SVD) is placed to surround the ALPHA atom trap. The main purpose of the SVD is to detect and locate antiproton annihilation events by means of the emitted charged pions. The SVD system is presented with special focus given to the design, fabrication and performance of the modules.
Review of Scientific Instruments | 2013
C. Amole; M. D. Ashkezari; M. Baquero-Ruiz; W. Bertsche; E. Butler; A. Capra; C. L. Cesar; S. Chapman; M. Charlton; S. Eriksson; Joel Fajans; T. Friesen; M. C. Fujiwara; D. R. Gill; A. Gutierrez; J. S. Hangst; W. N. Hardy; M. E. Hayden; C. A. Isaac; Svante Jonsell; L. Kurchaninov; A. Little; N. Madsen; J. T. K. McKenna; S. Menary; S. C. Napoli; P. J. Nolan; K. Olchanski; A. Olin; A. Povilus
Knowledge of the residual gas composition in the ALPHA experiment apparatus is important in our studies of antihydrogen and nonneutral plasmas. A technique based on autoresonant ion extraction from an electrostatic potential well has been developed that enables the study of the vacuum in our trap. Computer simulations allow an interpretation of our measurements and provide the residual gas composition under operating conditions typical of those used in experiments to produce, trap, and study antihydrogen. The methods developed may also be applicable in a range of atomic and molecular trap experiments where Penning-Malmberg traps are used and where access is limited.
NON-NEUTRAL PLASMA PHYSICS VIII: 10th International Workshop on Non-Neutral Plasmas | 2013
T. Friesen; C. Amole; M. D. Ashkezari; M. Baquero-Ruiz; W. Bertsche; P. D. Bowe; E. Butler; A. Capra; C. L. Cesar; M. Charlton; A. Deller; N. Evetts; S. Eriksson; Joel Fajans; M. C. Fujiwara; D. R. Gill; A. Gutierrez; J. S. Hangst; W. N. Hardy; M. E. Hayden; C. A. Isaac; Svante Jonsell; L. Kurchaninov; A. Little; N. Madsen; J. T. K. McKenna; S. Menary; S. C. Napoli; K. Olchanski; A. Olin
Long term magnetic confinement of antihydrogen atoms has recently been demonstrated by the ALPHA collaboration at CERN, opening the door to a range of experimental possibilities. Of particular interest is a measurement of the antihydrogen spectrum. A precise comparison of the spectrum of antihydrogen with that of hydrogen would be an excellent test of CPT symmetry. One prime candidate for precision CPT tests is the ground-state hyperfine transition; measured in hydrogen to a precision of nearly one part in 1012. Effective execution of such an experiment with trapped antihydrogen requires precise knowledge of the magnetic environment. Here we present a solution that uses an electron plasma confined in the antihydrogen trapping region. The cyclotron resonance of the electron plasma is probed with microwaves at the cyclotron frequency and the subsequent heating of the electron plasma is measured through the plasma quadrupole mode frequency. Using this method, the minimum magnetic field of the neutral trap ca...