Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. H. M. J. Triaud is active.

Publication


Featured researches published by A. H. M. J. Triaud.


Nature | 2017

Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1

Michaël Gillon; A. H. M. J. Triaud; Brice-Olivier Demory; Emmanuel Jehin; Eric Agol; Katherine M. Deck; Susan M. Lederer; Julien de Wit; Artem Burdanov; James G. Ingalls; Emeline Bolmont; Jérémy Leconte; Sean N. Raymond; Franck Selsis; Martin Turbet; Khalid Barkaoui; Adam J. Burgasser; M. R. Burleigh; Sean J. Carey; Aleksander Chaushev; C. M. Copperwheat; Laetitia Delrez; Catarina S. Fernandes; Daniel L. Holdsworth; Enrico J. Kotze; Valérie Van Grootel; Yaseen Almleaky; Z. Benkhaldoun; Pierre Magain; D. Queloz

One aim of modern astronomy is to detect temperate, Earth-like exoplanets that are well suited for atmospheric characterization. Recently, three Earth-sized planets were detected that transit (that is, pass in front of) a star with a mass just eight per cent that of the Sun, located 12 parsecs away. The transiting configuration of these planets, combined with the Jupiter-like size of their host star—named TRAPPIST-1—makes possible in-depth studies of their atmospheric properties with present-day and future astronomical facilities. Here we report the results of a photometric monitoring campaign of that star from the ground and space. Our observations reveal that at least seven planets with sizes and masses similar to those of Earth revolve around TRAPPIST-1. The six inner planets form a near-resonant chain, such that their orbital periods (1.51, 2.42, 4.04, 6.06, 9.1 and 12.35 days) are near-ratios of small integers. This architecture suggests that the planets formed farther from the star and migrated inwards. Moreover, the seven planets have equilibrium temperatures low enough to make possible the presence of liquid water on their surfaces.


Nature | 2016

Temperate Earth-sized planets transiting a nearby ultracool dwarf star

Michaël Gillon; Emmanuel Jehin; Susan M. Lederer; Laetitia Delrez; Julien de Wit; Artem Burdanov; Valérie Van Grootel; Adam J. Burgasser; A. H. M. J. Triaud; Cyrielle Opitom; Brice-Olivier Demory; D. K. Sahu; Daniella C. Bardalez Gagliuffi; Pierre Magain; D. Queloz

Star-like objects with effective temperatures of less than 2,700u2009kelvin are referred to as ‘ultracool dwarfs’. This heterogeneous group includes stars of extremely low mass as well as brown dwarfs (substellar objects not massive enough to sustain hydrogen fusion), and represents about 15 per cent of the population of astronomical objects near the Sun. Core-accretion theory predicts that, given the small masses of these ultracool dwarfs, and the small sizes of their protoplanetary disks, there should be a large but hitherto undetected population of terrestrial planets orbiting them—ranging from metal-rich Mercury-sized planets to more hospitable volatile-rich Earth-sized planets. Here we report observations of three short-period Earth-sized planets transiting an ultracool dwarf star only 12 parsecs away. The inner two planets receive four times and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star. Our data suggest that 11 orbits remain possible for the third planet, the most likely resulting in irradiation significantly less than that received by Earth. The infrared brightness of the host star, combined with its Jupiter-like size, offers the possibility of thoroughly characterizing the components of this nearby planetary system.


Astronomy and Astrophysics | 2013

Fast-evolving weather for the coolest of our two new substellar neighbours

Michaël Gillon; A. H. M. J. Triaud; Emmanuel Jehin; Laetitia Delrez; Cyrielle Opitom; Pierre Magain; M. Lendl; D. Queloz

We present the results of intense photometric monitoring in the near-infrared ( 0.9 m) with the TRAPPIST robotic telescope of the newly discovered binary brown dwarf WISE J104915.57-531906.1, the third closest system to the Sun at a distance of only 2 pc. Our twelve nights of time-series photometry reveal a quasi-periodic (P = 4:87 0:01h) variability with a maximum peak-peak amplitude of 11% and strong night-to-night evolution. We attribute this variability to the rotational modulation of fast-evolving weather patterns in the atmosphere of the coolest component ( T1-type) of the binary. No periodic signal is detected for the hottest component ( L8-type). For both brown dwarfs, our data allow us to firmly discard any unique transit during our observations for planets 2R . For orbital periods smaller than 9.5 h, transiting planets are excluded down to an Earth-size.


Astronomy and Astrophysics | 2013

The GAPS programme with HARPS-N at TNG - I. Observations of the Rossiter-McLaughlin effect and characterisation of the transiting system Qatar-1

E. Covino; M. Esposito; Mauro Barbieri; L. Mancini; Valerio Nascimbeni; R. U. Claudi; S. Desidera; R. Gratton; A. Lanza; A. Sozzetti; K. Biazzo; L. Affer; D. Gandolfi; Ulisse Munari; I. Pagano; A. S. Bonomo; A. Collier Cameron; G. Hébrard; A. Maggio; S. Messina; G. Micela; Emilio Molinari; F. Pepe; Giampaolo Piotto; Ignasi Ribas; N. C. Santos; J. Southworth; Evgenya L. Shkolnik; A. H. M. J. Triaud; L. R. Bedin

Context. Our understanding of the formation and evolution of planetary systems is still fragmentary because most of the current data provide limited information about the orbital structure and dynamics of these systems. The knowledge of the orbital properties for a variety of systems and at di erent ages yields information on planet migration and on star-planet tidal interaction mechanisms. Aims. In this context, a long-term, multi-purpose, observational programme has started with HARPS-N at TNG and aims to characterise the global architectural properties of exoplanetary systems. The goal of this first paper is to fully characterise the orbital properties of the transiting system Qatar-1 as well as the physical properties of the star and the planet. Methods. We exploit HARPS-N high-precision radial velocity measurements obtained during a transit to measure the Rossiter-McLaughlin e ect in the Qatar-1 system, and out-of-transit measurements to redetermine the spectroscopic orbit. New photometric-transit light-curves were analysed and a spectroscopic characterisation of the host star atmospheric parameters was performed based on various methods (line equivalent width ratios, spectral synthesis, spectral energy distribution). Results. We achieved a significant improvement in the accuracy of the orbital parameters and derived the spin-orbit alignment of the system; this information, combined with the spectroscopic determination of the host star properties (rotation, Te , logg, metallicity), allows us to derive the fundamental physical parameters for star and planet (masses and radii). The orbital solution for the Qatar-1 system is consistent with a circular orbit and the system presents a sky-projected obliquity of = 8:4 7:1 deg. The planet, with a mass of 1:33 0:05 MJ, is found to be significantly more massive than previously reported. The host star is confirmed to be metal-rich ([Fe/H] = 0:20 0:10) and slowly rotating (v sinI = 1:7 0:3 km s 1 ), though moderately active, as indicated by the strong chromospheric emission in the Caii H&K line cores (logR 0 4:60). Conclusions. We find that the system is well aligned and fits well within the general versus Te trend. We can definitely rule out any significant orbital eccentricity. The evolutionary status of the system is inferred based on gyrochronology, and the present orbital configuration and timescale for orbital decay are discussed in terms of star-planet tidal interactions.


Nature | 2016

A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and c

Julien de Wit; Hannah R. Wakeford; Michaël Gillon; Nikole K. Lewis; Jeff A. Valenti; Brice-Olivier Demory; Adam J. Burgasser; Artem Burdanov; Laetitia Delrez; Emmanuel Jehin; Susan M. Lederer; D. Queloz; A. H. M. J. Triaud; Valérie Van Grootel

Three Earth-sized exoplanets were recently discovered close to the habitable zone of the nearby ultracool dwarf star TRAPPIST-1 (ref. 3). The nature of these planets has yet to be determined, as their masses remain unmeasured and no observational constraint is available for the planetary population surrounding ultracool dwarfs, of which the TRAPPIST-1 planets are the first transiting example. Theoretical predictions span the entire atmospheric range, from depleted to extended hydrogen-dominated atmospheres. Here we report observations of the combined transmission spectrum of the two inner planets during their simultaneous transits on 4 May 2016. The lack of features in the combined spectrum rules out cloud-free hydrogen-dominated atmospheres for each planet atu2009≥10σ levels; TRAPPIST-1 b and c are therefore unlikely to have an extended gas envelope as they occupy a region of parameter space in which high-altitude cloud/haze formation is not expected to be significant for hydrogen-dominated atmospheres. Many denser atmospheres remain consistent with the featureless transmission spectrum—from a cloud-free water-vapour atmosphere to a Venus-like one.


The Astrophysical Journal | 2013

A GROUND-BASED OPTICAL TRANSMISSION SPECTRUM OF WASP-6b

Andrés Jordán; Néstor Espinoza; M. Rabus; Susana Eyheramendy; David K. Sing; J.-M. Desert; G. Á. Bakos; Jonathan J. Fortney; Mercedes Lopez-Morales; P. F. L. Maxted; A. H. M. J. Triaud; Andrew Szentgyorgyi

We present a ground-based optical transmission spectrum of the inflated sub-Jupiter-mass planet WASP-6b. The spectrum was measured in 20 spectral channels from 480 nm to 860 nm using a series of 91 spectra over a complete transit event. The observations were carried out using multi-object differential spectrophotometry with the Inamori-Magellan Areal Camera and Spectrograph on the Baade Telescope at Las Campanas Observatory. We model systematic effects on the observed light curves using principal component analysis on the comparison stars and allow for the presence of short and long memory correlation structure in our Monte Carlo Markov Chain analysis of the transit light curves for WASP-6. The measured transmission spectrum presents a general trend of decreasing apparent planetary size with wavelength and lacks evidence for broad spectral features of Na and K predicted by clear atmosphere models. The spectrum is consistent with that expected for scattering that is more efficient in the blue, as could be caused by hazes or condensates in the atmosphere of WASP-6b. WASP-6b therefore appears to be yet another massive exoplanet with evidence for a mostly featureless transmission spectrum, underscoring the importance that hazes and condensates can have in determining the transmission spectra of exoplanets.


The Astrophysical Journal | 2014

A MONITORING CAMPAIGN FOR LUHMAN 16AB. I. DETECTION OF RESOLVED NEAR-INFRARED SPECTROSCOPIC VARIABILITY

Adam J. Burgasser; Michaël Gillon; Jacqueline K. Faherty; Jacqueline Radigan; A. H. M. J. Triaud; Peter Plavchan; R. A. Street; Emmanuel Jehin; Laetitia Delrez; Cyrielle Opitom

We report resolved near-infrared spectroscopic monitoring of the nearby L dwarf/T dwarf binary WISE J104915.57–531906.1AB (Luhman 16AB), as part of a broader campaign to characterize the spectral energy distribution and temporal variability of this system. A continuous 45 minute sequence of low-resolution IRTF/SpeX data spanning 0.8-2.4 μm were obtained, concurrent with combined-light optical photometry with ESO/TRAPPIST. Our spectral observations confirm the flux reversal of this binary, and we detect a wavelength-dependent decline in the relative spectral fluxes of the two components coincident with a decline in the combined-light optical brightness of the system over the course of the observation. These data are successfully modeled as a combination of achromatic (brightness) and chromatic (color) variability in the T0.5 Luhman 16B, consistent with variations in overall cloud opacity; and no significant variability was found in L7.5 Luhman 16A, consistent with recent resolved photometric monitoring. We estimate a peak-to-peak amplitude of 13.5% at 1.25 μm over the full light curve. Using a simple two-spot brightness temperature model for Luhman 16B, we infer an average cold covering fraction of ≈30%-55%, varying by 15%-30% over a rotation period assuming a ≈200-400 K difference between hot and cold regions. We interpret these variations as changes in the covering fraction of a high cloud deck and corresponding holes which expose deeper, hotter cloud layers, although other physical interpretations are possible. A Rhines scale interpretation for the size of the variable features explains an apparent correlation between period and amplitude for Luhman 16B and the variable T dwarfs SIMP 0136+0933 and 2MASS J2139+0220, and predicts relatively fast winds (1-3 km s^(–1)) for Luhman 16B consistent with light curve evolution on an advective time scale (1-3 rotation periods). The strong variability observed in this flux reversal brown dwarf pair supports the model of a patchy disruption of the mineral cloud layer as a universal feature of the L dwarf/T dwarf transition.


The Astrophysical Journal | 2015

Dynamical Stability of Imaged Planetary Systems in Formation: Application to HL Tau

Daniel Tamayo; A. H. M. J. Triaud; Kristen Menou; Hanno Rein

A recent ALMA image revealed several concentric gaps in the protoplanetary disk surrounding the young star HL Tau. We consider the hypothesis that these gaps are carved by planets, and present a general framework for understanding the dynamical stability of such systems over typical disk lifetimes, providing estimates for the maximum planetary masses. We collect these easily evaluated constraints into a workflow that can help guide the design and interpretation of new observational campaigns and numerical simulations of gap opening in such systems. We argue that the locations of resonances should be significantly shifted in massive disks like HL Tau, and that theoretical uncertainties in the exact offset, together with observational errors, imply a large uncertainty in the dynamical state and stability in such disks. This presents an important barrier to using systems like HL Tau as a proxy for the initial conditions following planet formation. An important observational avenue to breaking this degeneracy is to search for eccentric gaps, which could implicate resonantly interacting planets. Unfortunately, massive disks like HL Tau should induce swift pericenter precession that would smear out any such eccentric features of planetary origin. This motivates pushing toward more typical, less massive disks. For a nominal non-resonant model of the HL Tau system with five planets, we find a maximum mass for the outer three bodies of approximately 2 Neptune masses. In a resonant configuration, these planets can reach at least the mass of Saturn. The inner two planets masses are unconstrained by dynamical stability arguments.


Astronomy and Astrophysics | 2016

Hot Jupiters with relatives: discovery of additional planets in orbit around WASP-41 and WASP-47

M. Neveu-VanMalle; D. Queloz; D. R. Anderson; D. J. A. Brown; A. Collier Cameron; Laetitia Delrez; R. F. Díaz; Michaël Gillon; C. Hellier; Emmanuel Jehin; T. A. Lister; F. Pepe; P. Rojo; D. Ségransan; A. H. M. J. Triaud; O. D. Turner; S. Udry

We report the discovery of two additional planetary companions to WASP-41 and WASP-47. WASP-41 c is a planet of minimum mass 3.18


Astronomy and Astrophysics | 2014

WASP-103 b: a new planet at the edge of tidal disruption

Michaël Gillon; D. R. Anderson; Andrew Collier-Cameron; Laetitia Delrez; C. Hellier; Emmanuel Jehin; M. Lendl; P. F. L. Maxted; F. Pepe; Don Pollacco; D. Queloz; D. Ségransan; A. M. S. Smith; B. Smalley; J. Southworth; A. H. M. J. Triaud; S. Udry; Valérie Van Grootel; Richard G. West

pm

Collaboration


Dive into the A. H. M. J. Triaud's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Pepe

University of Geneva

View shared research outputs
Researchain Logo
Decentralizing Knowledge