A. Hales
National Radio Astronomy Observatory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Hales.
Nature | 2013
S. Casassus; Gerrit van der Plas; Sebastian Perez M; William R. F. Dent; Ed Fomalont; Janis Hagelberg; A. Hales; Andrés Jordán; Dimitri Mawet; Francois Menard; Al Wootten; David J. Wilner; A. Meredith Hughes; Matthias R. Schreiber; J. H. Girard; Barbara Ercolano; H. Canovas; Pablo E. Román; Vachail Salinas
The formation of gaseous giant planets is thought to occur in the first few million years after stellar birth. Models predict that the process produces a deep gap in the dust component (shallower in the gas). Infrared observations of the disk around the young star HD 142527 (at a distance of about 140 parsecs from Earth) found an inner disk about 10 astronomical units (au) in radius (1 au is the Earth–Sun distance), surrounded by a particularly large gap and a disrupted outer disk beyond 140 au. This disruption is indicative of a perturbing planetary-mass body at about 90 au. Radio observations indicate that the bulk mass is molecular and lies in the outer disk, whose continuum emission has a horseshoe morphology. The high stellar accretion rate would deplete the inner disk in less than one year, and to sustain the observed accretion matter must therefore flow from the outer disk and cross the gap. In dynamical models, the putative protoplanets channel outer-disk material into gap-crossing bridges that feed stellar accretion through the inner disk. Here we report observations of diffuse CO gas inside the gap, with denser HCO+ gas along gap-crossing filaments. The estimated flow rate of the gas is in the range of 7 × 10−9 to 2 × 10−7 solar masses per year, which is sufficient to maintain accretion onto the star at the present rate.1. Departamento de Astronomı́a, Universidad de Chile, Casilla 36-D, Santiago, Chile 2. Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura 763-0355, Santiago Chile 3. European Southern Observatory (ESO), Casilla 19001, Vitacura, Santiago, Chile 4. National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475, USA 5. Observatoire de Genève, Université de Genève, 51 ch. des Maillettes, 1290, Versoix, Switzerland 6. Departamento de Astronomı́a y Astrofı́sica, Pontificia Universidad Católica de Chile, Santiago, Chile 7. UMI-FCA, CNRS / INSU France (UMI 3386) , and Departamento de Astronomı́a, Universidad de Chile, Santiago, Chile. 8. CNRS / UJF Grenoble 1, UMR 5274, Institut de Planétologie et dAstrophysique de Grenoble (IPAG), France 9. Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 USA 10. Department of Astronomy, U. C. Berkeley, 601 Campbell Hall, Berkeley, CA 94720 11. Departamento de Fı́sica y Astronomı́a, Universidad Valparaiso, Av. Gran Bretana 111, Valparaiso, Chile. 12. University Observatory, Ludwig-Maximillians University, Munich.
Science | 2014
William R. F. Dent; Mark C. Wyatt; Aki Roberge; J. C. Augereau; S. Casassus; S. Corder; J. S. Greaves; I. de Gregorio-Monsalvo; A. Hales; A. P. Jackson; A. Meredith Hughes; A. M. Lagrange; Brenda C. Matthews; D. Wilner
One-Sided Story from Disk In young analogs of the solar system, the ongoing erosion of comets and nascent planets produces dusty debris that is eventually expelled by the host star. Gas should also be released in this process when volatile ices sublimate, but it is detected less often. Using the Atacama Large Millimeter/Submillimeter Array, Dent et al. (p. 1490, published online 6 March; see the Perspective by Brandeker) mapped a highly asymmetric disk of dust and carbon monoxide orbiting the planet-hosting star, β Pictoris. The distribution of gas and dust is consistent with two proposed scenarios: In one, an outward-migrating planet has resonantly trapped dust-yielding bodies in two clumps opposite the star. In another, the entire debris mass is the result of a single recent collision of Mars-sized bodies. An asymmetric disk of dust and carbon monoxide indicates a recent large-scale collision or shepherding by an unseen planet. [Also see Perspective by Brandeker] Many stars are surrounded by disks of dusty debris formed in the collisions of asteroids, comets, and dwarf planets, but is gas also released in such events? Observations at submillimeter wavelengths of the archetypal debris disk around β Pictoris show that 0.3% of a Moon mass of carbon monoxide orbits in its debris belt. The gas distribution is highly asymmetric, with 30% found in a single clump 85 astronomical units from the star, in a plane closely aligned with the orbit of the inner planet, β Pictoris b. This gas clump delineates a region of enhanced collisions, either from a mean motion resonance with an unseen giant planet or from the remnants of a collision of Mars-mass planets.
The Astrophysical Journal | 2015
Christophe Pinte; William R. F. Dent; Francois Menard; A. Hales; T. Hill; P. Cortes; I. de Gregorio-Monsalvo
The recent ALMA observations of the disc surrounding HL Tau reveal a very complex dust spatial distribution. We present a radiative transfer model accounting for the observed gaps and bright rings as well as radial changes of the emissivity index. We find that the dust density is depleted by at least a factor 10 in the main gaps compared to the surrounding rings. Ring masses range from 10-100 M
Monthly Notices of the Royal Astronomical Society | 2014
G. Barentsen; H. J. Farnhill; Janet E. Drew; E. Gonzalez-Solares; R. Greimel; M. J. Irwin; Brent Miszalski; C. Ruhland; P. Groot; A. Mampaso; S. E. Sale; A.A. Henden; A. Aungwerojwit; M. J. Barlow; P.R. Carter; Romano L. M. Corradi; Jeremy J. Drake; J. Eislöffel; J. Fabregat; B. T. Gänsicke; N. P. Gentile Fusillo; A. Hales; Simon T. Hodgkin; Leo Huckvale; J. Irwin; Robert R. King; Christian Knigge; T. Kupfer; E. Lagadec; Daniel J. Lennon
_{\oplus}
Astronomy and Astrophysics | 2013
H. Canovas; Francois Menard; A. Hales; Andrés Jordán; M. R. Schreiber; S. Casassus; T. M. Gledhill; C. Pinte
in dust, and, we find that each of the deepest gaps is consistent with the removal of up to 40 M
Nature | 2016
Lucas A. Cieza; Simon Casassus; John J. Tobin; Steven P. Bos; Jonathan P. Williams; Sebastian Perez; Zhaohuan Zhu; C. Caceres; H. Canovas; Michael M. Dunham; A. Hales; Jose Luis Palacio Prieto; David A. Principe; Matthias R. Schreiber; Dary Ruiz-Rodriguez; Alice Zurlo
_{\oplus}
The Astronomical Journal | 2010
A. M. Hughes; Sean M. Andrews; David J. Wilner; Michael R. Meyer; John M. Carpenter; Chunhua Qi; A. Hales; S. Casassus; M. R. Hogerheijde; Eric E. Mamajek; Sebastian Wolf; T. Henning; Murray D. Silverstone
of dust. If this material has accumulated into rocky bodies, these would be close to the point of runaway gas accretion. Our model indicates that the outermost ring is depleted in millimetre grains compared to the central rings. This suggests faster grain growth in the central regions and/or radial migration of the larger grains. The morphology of the gaps observed by ALMA - well separated and showing a high degree of contrast with the bright rings over all azimuths - indicates that the millimetre dust disc is geometrically thin (scale height
The Astrophysical Journal | 2015
H. Canovas; M. R. Schreiber; C. Caceres; Francois Menard; Christophe Pinte; Geoffrey S. Mathews; Lucas A. Cieza; S. Casassus; A. Hales; Jonathan P. Williams; Pablo E. Román; A. Hardy
\approx
The Astrophysical Journal | 2016
Jesse Lieman-Sifry; A. Meredith Hughes; John M. Carpenter; Uma Gorti; A. Hales; Kevin M. Flaherty
1 au at 100 au) and that a large amount of settling of large grains has already occurred. Assuming a standard dust settling model, we find that the observations are consistent with a turbulent viscosity coefficient of a few
Monthly Notices of the Royal Astronomical Society | 2016
H. Canovas; C. Caceres; M. R. Schreiber; A. Hardy; L. Cieza; Francois Menard; A. Hales
10^{-4}