A. Heerschap
Philips
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Heerschap.
British Journal of Cancer | 2008
G. Gambarota; William Leenders; Cathy Maass; Pieter Wesseling; A.J. van der Kogel; O. van Tellingen; A. Heerschap
To enhance the success rate of antiangiogenic therapies in the clinic, it is crucial to identify parameters for tumour angiogenesis that can predict response to these therapies. In brain tumours, one such parameter is vascular leakage, which is a response to tumour-derived vascular endothelial growth factor-A and can be measured by Gadolinium-DTPA (Gd-DTPA)-enhanced magnetic resonance imaging (MRI). However, as vascular permeability and angiogenesis are not strictly coupled, tumour blood volume may be another potentially important parameter. In this study, contrast-enhanced MR imaging was performed in three orthotopic mouse models for human brain tumours (angiogenic melanoma metastases and E34 and U87 human glioma xenografts) using both Gd-DTPA to detect vascular leakage and ultrasmall iron oxide particles (USPIO) to measure blood volume. Pixel-by-pixel maps of the enhancement in the transverse relaxation rates (ΔR2 and ΔR2*) after injection of USPIO provided an index proportional to the blood volume of the microvasculature and macrovasculature, respectively, for each tumour. The melanoma metastases were characterised by a blood volume and vessel leakage higher than both glioma xenografts. The U87 glioblastoma xenografts displayed higher permeability and blood volume in the rim than in the core. The E34 glioma xenografts were characterised by a relatively high blood volume, accompanied by only a moderate blood–brain barrier disruption. Delineation of the tumour was best assessed on post-USPIO gradient-echo images. These findings suggest that contrast-enhanced MR imaging using USPIOs and, in particular, ΔR2 and ΔR2* quantitation, provides important additional information about tumour vasculature.
Investigational New Drugs | 2006
H.W.M. van Laarhoven; Giulio Gambarota; A. Heerschap; Jasper Lok; I. Verhagen; A. Corti; Salvatore Toma; C. Gallo Stampino; A.J. van der Kogel; C.J.A. Punt
SummaryTNF-α may improve drug delivery to tumors by alteration of vascular permeability. However, toxicity precludes its systemic administration in patients. NGR-TNF comprises TNF coupled to the peptide CNGRC, which is a ligand for CD13. CD13 is expressed on tumor vasculature. Therefore, to assess the efficacy of NGR-TNF its biological effect on tumor vasculature should be measured rather than its effect on tumor growth. The aim of this study was to assess the effects of a low dose of NGR-TNF (5 ng/kg) on vascular permeability, tumor hypoxia, perfusion and proliferation in lymphoma bearing mice. MRI measurements with blood pool contrast agent showed an increased leakage of the contrast agent from the vasculature in NGR-TNF treated tumors compared with controls (p < 0.05), suggesting NGR-TNF-induced vascular permeability. Immunohistochemical analysis two hours after NGR-TNF treatment showed a decrease in tumor hypoxia (p < 0.1) and an increase in labeling index of the S-phase marker bromodeoxyuridine (p < 0.1), possibly due to an increase in tumor blood flow after NGR-TNF treatment. Although a decrease in tumor hypoxia and an increase in labeling index could have lead to increased tumor growth, in this experiment after one day a decrease in tumor volume was measured. Possibly, the effects on tumor hypoxia and proliferation two hours after treatment are transient and overruled by other, more longlasting effects. For example, the observed increase in vascular permeability may lead to haemoconcentration and increased interstitial pressure, ultimately resulting in an reduction of tumor blood flow and thus a decrease in tumor growth. A beneficial effect of NGR-TNF in combination with other therapeutical agents may therefore critically depend on the sequence and timing of the regimens. Currently, NGR-TNF is being tested in clinical studies.
international conference of the ieee engineering in medicine and biology society | 2004
Andy Devos; Lukas Lukas; Arjan W. Simonetti; Johan A. K. Suykens; Leentje Vanhamme; M. van der Graaf; Lutgarde M. C. Buydens; A. Heerschap; S. Van Huffel
Magnetic resonance imaging (MRI) and magnetic resonance spectroscopic imaging (MRSI) play an important role in the noninvasive diagnosis of brain tumours. We investigate the use of both MRI and MRSI, separately and in combination with each other for classification of brain tissue types. Many clinically relevant classification problems are considered; for example healthy versus tumour tissues, low- versus high-grade tumours. Linear as well as nonlinear techniques are compared. The classification performance is evaluated by the area under the receiver operating characteristic (ROC) curve (AUC). In general, all techniques achieve a high performance, except when using MRI alone. For example, for low- versus high-grade tumours, low- versus high-grade gliomas, gliomas versus meningiomas, respectively a test AUC higher than 0.91, 0.93 and 0.98 is reached, when both MRI and MRSI data are used.
British Journal of Cancer | 1997
B.P.J. van den Sanden; P.F.J.W. Rijken; A. Heerschap; H.J.J.A. Bernsen; A.J. van der Kogel
The relationship between the bioenergetic status of human glioma xenografts in nude mice and morphometric parameters of the perfused vascular architecture was studied using (31)P magnetic resonance spectroscopy (MRS), fluorescence microscopy and two-dimensional digital image analysis. Two tumour lines with a different vascular architecture were used for this study. Intervascular distances and non-perfused area fractions varied greatly between tumours of the same line and tumours of different lines. The inorganic phosphate-nucleoside triphosphate (P(i)/NTP) ratio increased rapidly as mean intervascular distances increased from 100 microm to 300 microm. Two morphometric parameters - the percentage of intervascular distances larger than 200 microm (ivd200) and the non-perfused area fraction at a distance larger than 100 microm from a nearest perfused vessel (area100), - were deduced from these experiments and related to the P(i)/NTP ratio of the whole tumour. It is assumed that an aerobic to anaerobic transition influences the bioenergetic status, i.e. the P(i)/NTP ratio increased linearly with the percentage of ivd200 and the area100.
Journal of Neuro-oncology | 1992
H. I. J. A. Bernsen; A. Heerschap; A.J. van der Kogel; J. J. Van Vaals; M.J.J. Prick; E. F. J. Poels; Jeffrey Meyer; J.A. Grotenhuis
In this study a human glioma-derived intracerebral tumor model was analyzed histologically and examined by image-guided 1H NMR spectroscopy. It was shown that histological characteristics such as cellular subpopulation and necrosis of the primary tumor were preserved in the implants. Usually circumscript tumor growth was present with tumor cells invading the surrounding brain parenchyma.It was demonstrated that tumor growth and tumor metabolism could be monitored by image-guided 1H NMR spectroscopy in a longitudinal study. One of the initial changes noticed was the rise of the lactate signal in the tumor region followed by an increase of the choline and a decrease of N-acetyl-aspartate and phosphocreatine signals. Even before tumor invasion in brain adjacent to the central tumor area could be demonstrated by NMR imaging increased lactate and moderately increased choline signals were measured in these regions. By histopathological examination these areas were shown to be infiltrated by single tumor cells. These observations indicate that image-guided H NMR spectroscopy could play an important role in the study of brain tumor biology, especially in the case of changing tumor metabolism during growth.
Magnetic Resonance Materials in Physics Biology and Medicine | 2004
Dennis Klomp; M. van der Graaf; M.A.A.P. Willemsen; Y.M. van der Meulen; A. P. M. Kentgens; A. Heerschap
Abstract1H magnetic resonance (MR) spectroscopy is a useful tool to obtain metabolic information from the brain in paediatric patients. To detect signals of metabolites at low concentrations or from small volumes, the signal-to-noise ratio (SNR) has to be optimized. The SNR can be increased by going to higher field strengths. However, this leads to higher spectral bandwidths, which increases the chemical shift artefact. Here we present a transmit/receive headcoil which is adapted to the dimensions of the paediatric head and enables PRESS localization with high radio-frequency (RF) bandwidths that minimize the chemical shift displacement to only 5%. In addition, since the pulse lengths are shorter with higher RF bandwidths, the echo time can be reduced to 10 ms improving SNR as well.
Radiation Research | 2005
H.W.M. van Laarhoven; J. Bussink; Jasper Lok; I. Verhagen; C.J.A. Punt; A. Heerschap; Johannes H.A.M. Kaanders; A.J. van der Kogel
Abstract van Laarhoven, H. W. M., Bussink, J., Lok, J., Verhagen, I., Punt, C. J. A., Heerschap, A., Kaanders, J. H. A. M. and van der Kogel, A. J. Modulation of Hypoxia in Murine Liver Metastases of Colon Carcinoma by Nicotinamide and Carbogen. Radiat. Res. 164, 245–249 (2005). There is increasing evidence that modulation of tumor hypoxia may improve therapy outcome. However, most preclinical data are derived from subcutaneous rather than orthotopic tumor models. We investigated the effect of the hypoxia-modulating agents nicotinamide and carbogen on tumor hypoxia, tumor blood perfusion, and proliferative activity in liver metastases of the murine colon carcinoma line C26a. In untreated C26a liver metastases, we observed a considerable amount of hypoxia, similar to the amount in liver metastases of patients with colorectal cancer. Compared to untreated mice, we observed a significantly smaller hypoxic fraction in the liver metastases of mice treated with nicotinamide and carbogen breathing as single treatments or in combination. In the group of mice that underwent carbogen breathing, perfusion was significantly lower than in the untreated group, but the decrease was only marginal. The proliferative activity was similar in all groups. In C26a subcutaneous tumors, a similar effect on hypoxia has been observed that was, however, combined with a decrease in proliferative activity. The different effects of nicotinamide and carbogen on parameters of the tumor microenvironment in liver metastases and subcutaneous tumors suggest that the host tissue influences the mechanism by which nicotinamide and carbogen exert their effects. Since tumor hypoxia may be a clinical problem in colorectal liver metastases, our results open possibilities for further research on the effect of hypoxia modifiers on colorectal liver metastases to improve therapy outcome.
Magnetic Resonance Materials in Physics Biology and Medicine | 2004
Marielle Philippens; Giulio Gambarota; J. A. Pikkemaat; Wenny J.M. Peeters; A. J. van der Kogel; A. Heerschap
The aim of this study was to detect late radiation effects in the rat spinal cord using MR imaging with ultra-small particles of iron oxide (USPIO) contrast agent to better understand the development of late radiation damage with emphasis on the period preceding neurological signs. Additionally, the role of an inflammatory reaction was assessed by measuring macrophages that internalized USPIO. T2-weighted spin echo MR measurements were performed at 7T in six rats before paresis was expected (130–150 days post-irradiation, early group), and in six paretic rats (150–190 days post-irradiation, late group). Measurements were performed before, directly after and, only in the early group, 40 h after USPIO administration and compared with histology. In the early group, MR images showed focal regions in grey matter (GM) and white matter (WM) with signal intensity reduction after USPIO injection. Larger lesions with contrast enhancement were located in and around edematous GM of three animals of the early group and five of the late group. Forty hours after injection, additional lesions in WM, GM and nerve roots appeared in animals with GM edema. In the late paretic group, MR imaging showed WM necrosis adjacent to areas with large contrast enhancement. In conclusion, detection of early focal lesions was improved by contrast administration. In the animals with extended radiation damage, large hypo-intense regions appeared due to USPIO, which might be attributed to blood spinal cord barrier breakdown, but the involvement of blood-derived iron-loaded macrophages could not be excluded.
NMR in Biomedicine | 1989
Peter R. Luyten; Gerard Bruntink; Frenk M. Sloff; Jan W. A. H. Vermeulen; Jan I. Van Der Heijden; Jan A. Den Hollander; A. Heerschap
NMR in Biomedicine | 2003
Mark Rijpkema; Janneke Schuuring; Y.M. van der Meulen; M. van der Graaf; H.J.J.A. Bernsen; Rudolf H. Boerman; A.J. van der Kogel; A. Heerschap
Collaboration
Dive into the A. Heerschap's collaboration.
European Organisation for Research and Treatment of Cancer
View shared research outputs