Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Hernández-Ramírez is active.

Publication


Featured researches published by A. Hernández-Ramírez.


Chemosphere | 2011

Mineralization of Acid Yellow 36 azo dye by electro-Fenton and solar photoelectro-Fenton processes with a boron-doped diamond anode.

Edgar J. Ruiz; Conchita Arias; Enric Brillas; A. Hernández-Ramírez; Juan M. Peralta-Hernández

The degradation of the Acid Yellow 36 (AY36) azo dye is studied by electro-Fenton (EF) and solar photoelectro-Fenton (SPEF) using a recirculation flow plant with an undivided cell containing a boron-doped diamond anode and an air-diffusion cathode for H₂O₂ electrogeneration, coupled with a solar photoreactor. A solution of 2.5L with 108 mg L⁻¹ of the dye and 0.5 mM Fe²(+) at pH 3.0 was comparatively treated at constant current. Hydroxyl radicals formed from Fentons reaction and at the anode surface are the main oxidants. Total mineralization is almost achieved in SPEF, while EF yields poor TOC removal. Both processes are accelerated with increasing current. AY36 decays with similar rate in EF and SPEF following a pseudo first-order reaction, but the solution is more slowly decolorized because of the formation of conjugated byproducts. NH₄(+) ion is released in SPEF, while NO₃⁻ ion is mainly lost in EF. Tartronic, maleic, fumaric, oxalic, formic and oxamic acids are detected as generated carboxylic acids. Fe(III)-oxalate complexes are largely accumulated in EF and their quick photodecomposition in SPEF explains its higher oxidation power. The SPEF method yields greater current efficiency and lower energy cost as current decreases, and then it is more viable at low currents.


Science of The Total Environment | 2014

Arsenic accumulation in maize crop (Zea mays): A review

J.M. Rosas-Castor; Jorge Luis Guzmán-Mar; A. Hernández-Ramírez; M. T. Garza-González; L. Hinojosa-Reyes

Arsenic (As) is a metalloid that may represent a serious environmental threat, due to its wide abundance and the high toxicity particularly of its inorganic forms. The use of arsenic-contaminated groundwater for irrigation purposes in crop fields elevates the arsenic concentration in topsoil and its phytoavailability for crops. The transfer of arsenic through the crops-soil-water system is one of the more important pathways of human exposure. According to the Food and Agriculture Organization of the United Nations, maize (Zea mays L.) is the most cultivated cereal in the world. This cereal constitutes a staple food for humans in the most of the developing countries in Latin America, Africa, and Asia. Thus, this review summarizes the existing literature concerning the conditions involved in agricultural soil that leads to As influx into maize crops and the uptake mechanisms, metabolism and phytotoxicity of As in corn plants. Additionally, the studies of the As accumulation in raw corn grain and corn food are summarized, and the As biotransfer into the human diet is highlighted. Due to high As levels found in editable plant part for livestock and humans, the As uptake by corn crop through water-soil-maize system may represent an important pathway of As exposure in countries with high maize consumption.


Analytica Chimica Acta | 2011

Applicability of multisyringe chromatography coupled to cold-vapor atomic fluorescence spectrometry for mercury speciation analysis

Jorge Luis Guzmán-Mar; L. Hinojosa-Reyes; Antonio M. Serra; A. Hernández-Ramírez; Víctor Cerdà

In this paper, a novel automatic approach for the speciation of inorganic mercury (Hg(2+)), methylmercury (MeHg(+)) and ethylmercury (EtHg(+)) using multisyringe chromatography (MSC) coupled to cold-vapor atomic fluorescence spectrometry (CV/AFS) was developed. For the first time, the separation of mercury species was accomplished on a RP C18 monolithic column using a multi-isocratic elution program. The elution protocol involved the use of 0.005% 2-mercapthoethanol in 240 mM ammonium acetate (pH 6)-acetonitrile (99:1, v/v), followed by 0.005% 2-mercapthoethanol in 240 mM ammonium acetate (pH 6)-acetonitrile (90:10, v/v). The eluted mercury species were then oxidized under post-column UV radiation and reduced using tin(II) chloride in an acidic medium. Subsequently, the generated mercury metal were separated from the reaction mixture and further atomized in the flame atomizer and detected by AFS. Under the optimized experimental conditions, the limits of detection (3σ) were found to be 0.03, 0.11 and 0.09 μg L(-1) for MeHg(+), Hg(2+) and EtHg(+), respectively. The relative standard deviation (RSD, n=6) of the peak height for 3, 6 and 3 μg L(-1) of MeHg(+), Hg(2+) and EtHg(+) (as Hg) ranged from 2.4 to 4.0%. Compared with the conventional HPLC-CV/AFS hyphenated systems, the proposed MSC-CV/AFS system permitted a higher sampling frequency and low instrumental and operational costs. The developed method was validated by the determination of a certified reference material DORM-2 (dogfish muscle), and was further applied for the determination of mercury species environmental and biological samples.


Journal of Hazardous Materials | 2009

Enhancing the electrochemical oxidation of acid-yellow 36 azo dye using boron-doped diamond electrodes by addition of ferrous ion

M. Villanueva-Rodríguez; A. Hernández-Ramírez; Juan M. Peralta-Hernández; Erick R. Bandala; Marco A. Quiroz-Alfaro

This work shows preliminary results on the electrochemical oxidation process (EOP) using boron-doped diamond (BDD) electrode for acidic yellow 36 oxidation, a common azo dye used in textile industry. The study is centred in the synergetic effect of ferrous ions and hydroxyl free radicals for improving discoloration of azo dye. The assays were carried out in a typical glass cell under potentiostatic conditions. On experimental conditions, the EOP was able to partially remove the dye from the reaction mixture. The reaction rate increased significantly by addition of Fe(2+) (1mM as ferrous sulphate) to the system and by (assumed) generation of ferrate ion [Fe(VI)] over BDD electrode. Ferrate is considered as a highly oxidizing reagent capable of removing the colorant from the reaction mixture, in synergistic action with the hydroxyl radicals produced on the BDD surface. Further increases in the Fe(2+) concentration lead to depletion of the reaction rate probably due to the hydroxyl radical scavenging effect of Fe(2+) excess in the system.


Chemosphere | 2014

Coupling of solar photoelectro-Fenton with a BDD anode and solar heterogeneous photocatalysis for the mineralization of the herbicide atrazine.

Benjamín Raymundo Garza-Campos; Jorge Luis Guzmán-Mar; Laura Hinojosa Reyes; Enric Brillas; A. Hernández-Ramírez; Edgar J. Ruiz-Ruiz

Here, the synergetic effect of coupling solar photoelectro-Fenton (SPEF) and solar heterogeneous photocatalysis (SPC) on the mineralization of 200mL of a 20mg L(-1) atrazine solution, prepared from the commercial herbicide Gesaprim, at pH 3.0 was studied. Uniform, homogeneous and adherent anatase-TiO2 films onto glass spheres of 5mm diameter were prepared by the sol-gel dip-coating method and used as catalyst for SPC. However, this procedure yielded a poor removal of the substrate because of the low oxidation ability of positive holes and OH formed at the catalyst surface to destroy it. Atrazine decay was improved using anodic oxidation (AO), electro-Fenton (EF), SPEF and coupled SPEF-SPC at 100mA. The electrolytic cell contained a boron-doped diamond (BDD) anode and H2O2 was generated at a BDD cathode fed with an air flow. The removal and mineralization of atrazine increased when more oxidizing agents were generated in the sequence AO<EF<SPEF<coupled SPEF-SPC. Organics were destroyed by OH formed from water oxidation at the BDD anode in AO, along with OH formed from Fentons reaction between added Fe(2+) and generated H2O2 in EF. In SPEF, solar radiation produced higher amounts of OH induced from the photolysis of Fe(III) species and photodecomposed intermediates like Fe(III)-carboxylate complexes. The synergistic action of sunlight in the most potent coupled SPEF-SPC was ascribed to the additional quick removal of several intermediates with the oxidizing agents formed at the TiO2 surface. After 300min of this treatment, 80% mineralization, 9% mineralization current efficiency and 1.93kWhg(-1) TOC energy cost were obtained. The mineralization of atrazine was inhibited by the production of cyanuric acid, which was the main byproduct detected at the end of the coupled SPEF-SPC process.


Journal of Hazardous Materials | 2016

Salicylic acid degradation by advanced oxidation processes. Coupling of solar photoelectro-Fenton and solar heterogeneous photocatalysis

Benjamín Raymundo Garza-Campos; Enric Brillas; A. Hernández-Ramírez; Abdellatif El-Ghenymy; Jorge Luis Guzmán-Mar; Edgar J. Ruiz-Ruiz

A 3.0 L solar flow plant with a Pt/air-diffusion (anode/cathode) cell, a solar photoreactor and a photocatalytic photoreactor filled with TiO2-coated glass spheres has been utilized to couple solar photoelectro-Fenton (SPEF) and solar heterogeneous photocatalysis (SPC) for treating a 165mgL(-1) salicylic acid solution of pH 3.0. Organics were destroyed by OH radicals formed on the TiO2 photocatalyst and at the Pt anode during water oxidation and in the bulk from Fentons reaction between added Fe(2+) and cathodically generated H2O2, along with the photolytic action of sunlight. Poor salicylic acid removal and mineralization were attained using SPC, anodic oxidation with electrogenerated H2O2 (AO-H2O2) and coupled AO-H2O2-SPC. The electro-Fenton process accelerated the substrate decay, but with low mineralization by the formation of byproducts that are hardly destroyed by OH. The mineralization was strongly increased by SPEF due to the photolysis of products by sunlight, being enhanced by coupled SPEF-SPC due to the additional oxidation by OH at the TiO2 surface. The effect of current density on the performance of both processes was examined. The most potent SPEF-SPC process at 150mAcm(-2) yielded 87% mineralization and 13% current efficiency after consuming 6.0AhL(-1). Maleic, fumaric and oxalic acids detected as final carboxylic acids were completely removed by SPEF and SPEF-SPC.


Science of The Total Environment | 2014

Evaluation of the transfer of soil arsenic to maize crops in suburban areas of San Luis Potosi, Mexico.

J.M. Rosas-Castor; Jorge Luis Guzmán-Mar; A. Hernández-Ramírez; Iván N. Pérez-Maldonado; A. Caballero-Quintero; L. Hinojosa-Reyes

The presence of arsenic (As) in agricultural food products is a matter of concern because it can cause adverse health effects at low concentrations. Agricultural-product intake constitutes a principal source for As exposure in humans. In this study, the contribution of the chemical-soil parameters in As accumulation and translocation in the maize crop from a mining area of San Luis Potosi was evaluated. The total arsenic concentration and arsenic speciation were determined by HG-AFS and IC-HG-AFS, respectively. The data analysis was conducted by cluster analysis (CA) and principal component analysis (PCA). The soil pH presented a negative correlation with the accumulated As in each maize plant part, and parameters such as iron (Fe) and manganese (Mn) presented a higher correlation with the As translocation in maize. Thus, the metabolic stress in maize may induce organic acid exudation leading a higher As bioavailability. A high As inorganic/organic ratio in edible maize plant tissues suggests a substantial risk of poisoning by this metalloid. Careful attention to the chemical changes in the rhizosphere of the agricultural zones that can affect As transfer through the food chain could reduce the As-intoxication risk of maize consumers.


Science of The Total Environment | 2016

An evaluation of the migration of antimony from polyethylene terephthalate (PET) plastic used for bottled drinking water.

C.A. Chapa-Martínez; L. Hinojosa-Reyes; A. Hernández-Ramírez; Edgar J. Ruiz-Ruiz; L. Maya-Treviño; Jorge Luis Guzmán-Mar

The leaching of antimony (Sb) from polyethylene terephthalate (PET) bottling material was assessed in twelve brands of bottled water purchased in Mexican supermarkets by atomic fluorescence spectrometry with a hydride generation system (HG-AFS). Dowex® 1X8-100 ion-exchange resin was used to preconcentrate trace amounts of Sb in water samples. Migration experiments from the PET bottle material were performed in water according to the following storage conditions: 1) temperature (25 and 75°C), 2) pH (3 and 7) and 3) exposure time (5 and 15days), using ultrapure water as a simulant for liquid foods. The test conditions were studied by a 2(3) factorial experimental design. The Sb concentration measured in the PET packaging materials varied between 73.0 and 111.3mg/kg. The Sb concentration (0.28-2.30μg/L) in all of the PET bottled drinking water samples examined at the initial stage of the study was below the maximum contaminant level of 5μg/L prescribed by European Union (EU) regulations. The parameters studied (pH, temperature, and storage time) significantly affected the release of Sb, with temperature having the highest positive significant effect within the studied experimental domain. The highest Sb concentration leached from PET containers was in water samples at pH7 stored at 75°C for a period of 5days. The extent of Sb leaching from the PET ingredients for different brands of drinking water can differ by as much as one order of magnitude in experiments conducted under the worst-case conditions. The chronic daily intake (CDI) caused by the release of Sb in one brand exceeded the Environmental Protection Agency (USEPA) regulated CDI value of 400ng/kg/day, with values of 514.3 and 566.2ng/kg/day for adults and children. Thus, the appropriate selection of the polymer used for the production of PET bottles seems to ensure low Sb levels in water samples.


Talanta | 2017

Determination of phthalates in bottled water by automated on-line solid phase extraction coupled to liquid chromatography with uv detection

Daniel Salazar-Beltrán; L. Hinojosa-Reyes; Edgar J. Ruiz-Ruiz; A. Hernández-Ramírez; Jorge Luis Guzmán-Mar

An on-line solid phase extraction coupled to liquid chromatography with UV detection (SPE/LC-UV) method was automated by the multisyringe flow-injection analysis (MSFIA) system for the determination of three phthalic acid esters (PAEs). The PAEs determined in drinking water stored in polyethylene terephthalate (PET) bottles of ten commercial brands were dimethyl phthalate (DMP), diethyl phthalate (DEP) and dibutyl phthalate (DBP). C18-bonded silica membrane was used for isolation and enrichment of the PAEs in water samples. The calibration range of the SPE/LC-UV method was 2.5-100μgL-1 for DMP and DEP and 10-100μgL-1 for DBP with correlation coefficients (r) ranging from 0.9970 to 0.9975. Limits of detection (LODs) were between 0.7 and 2.4μgL-1. Inter-day reproducibility performed at two concentration levels (10 and 100μgL-1) expressed as relative standard deviation (%RSD) were found in the range of 0.9-4.0%. The solvent volume was reduced to 18mL with a total analysis time of 48min per sample. The major species detected in bottled water samples was DBP reaching concentrations between 20.5 and 82.8μgL-1. The recovery percentages for the three analytes in drinking water were 80-115%. The migration test showed a great variation in the sum of migrated PAEs level (10.2-50.6μgL-1) among the PET bottle brands analyzed indicating that the presence of these contaminants in the plastic containers may depend on raw materials and the conditions used during their production process.


Talanta | 2012

Sensitive determination of chromium (VI) in paint samples using a membrane optode coupled to a multisyringe flow injection system

W.L. Castilleja-Rivera; L. Hinojosa-Reyes; Jorge Luis Guzmán-Mar; A. Hernández-Ramírez; Edgar J. Ruiz-Ruiz; Víctor Cerdà

In this work, the potential of a membrane optode coupled to a multisyringe flow injection system (MSFIA) was assessed for determining the Cr(VI) concentration in paint samples. The detection is based on the color obtained from the reaction of Cr(VI) with 1,5-diphenylcarbazide in the presence of sulfuric acid (H(2)SO(4)). The redox product was immobilized on a poly(styrene-divinylbenzene) (SDB-XC) membrane optode. The analyte in the sample was then directly quantified at the surface of the disk by measuring the intensity of reflected incident light using a bifurcated optical fiber at 540 nm. Experimental parameters (concentration of reagents, sample volume, flow rate of sample solutions, eluent concentration, and effect of diverse ions) were studied in detail. The overall time required for the complete procedure was 4 min and only required 0.2 mL of the sample volume. The dynamic working response of Cr(VI) was found within the concentration range of 2.4-1000 μg L(-1) with a limit of detection (LOD) of 0.7 μg L(-1), while the relative standard deviation (RSD) for 400 μg L(-1) Cr(VI) was lower than 2% (n=6). This developed method was used to determine Cr(VI) concentrations in the paint samples, for which an alkaline extraction procedure was proposed. The extraction procedure was based on the use of a 7.5% Na(2)CO(3)/5% NaOH solution at 90 °C for 30 min. Under optimal conditions, the recoveries ranged from 99% to 101%. The complete method was validated using a certified reference material (ERA-QC540, soil sample) and by comparing the results with those obtained using atomic absorption spectrometry (AAS).

Collaboration


Dive into the A. Hernández-Ramírez's collaboration.

Top Co-Authors

Avatar

Jorge Luis Guzmán-Mar

Universidad Autónoma de Nuevo León

View shared research outputs
Top Co-Authors

Avatar

L. Hinojosa-Reyes

Universidad Autónoma de Nuevo León

View shared research outputs
Top Co-Authors

Avatar

Edgar J. Ruiz-Ruiz

Universidad Autónoma de Nuevo León

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Villanueva-Rodríguez

Universidad Autónoma de Nuevo León

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Víctor Cerdà

University of the Balearic Islands

View shared research outputs
Top Co-Authors

Avatar

J.M. Rosas-Castor

Universidad Autónoma de Nuevo León

View shared research outputs
Top Co-Authors

Avatar

Benjamín Raymundo Garza-Campos

Universidad Autónoma de Nuevo León

View shared research outputs
Top Co-Authors

Avatar

Daniel Salazar-Beltrán

Universidad Autónoma de Nuevo León

View shared research outputs
Researchain Logo
Decentralizing Knowledge