Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. I. Poland is active.

Publication


Featured researches published by A. I. Poland.


Solar Physics | 1995

The SOHO Mission: An Overview

Vicente Domingo; B. Fleck; A. I. Poland

The Solar and Heliospheric Observatory (SOHO) is a space mission that forms part of the Solar-Terrestrial Science Program (STSP), developed in a collaborative effort by the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA). The STSP constitutes the first “cornerstone” of ESA’s long-term programme known as “Space Science — Horizon 2000”. The principal scientific objectives of the SOHO mission are a) to reach a better understanding of the structure and dynamics of the solar interior using techniques of helioseismology, and b) to gain better insight into the physical processes that form and heat the Sun’s corona, maintain it and give rise to its acceleration into the solar wind. To achieve these goals, SOHO carries a pay-load consisting of 12 sets of complementary instruments. SOHO is a three-axis stabilized spacecraft with a total mass of 1850 kg; 1150 W of power will be provided by the solar panels. The payload weighs about 640 kg and will consume 450 W in orbit. SOHO will be launched by an ATLAS II-AS and will be placed in a halo orbit around the Sun-Earth L1 Lagrangian point where it will be continuously pointing to Sun centre with an accuracy of 10 arcsec. Pointing stability will be better than 1 arcsec over 15 min intervals. The SOHO payload produces a continuous science data stream of 40 kbits/s which will be increased by 160 kbits/s whenever the solar oscillations imaging instrument is operated in its high-rate mode. Telemetry will be received by NASA‘s Deep Space Network (DSN). Planning, coordination and operation of the spacecraft and the scientific payload will be conducted from the Experiment Operations Facility (EOF) at NASA‘s Goddard Space Flight Center (GSFC).


Solar Physics | 1995

SUMER - Solar Ultraviolet Measurements of Emitted Radiation

K. Wilhelm; W. Curdt; Eckart Marsch; U. Schühle; P. Lemaire; A. H. Gabriel; J.-C. Vial; M. Grewing; M. C. E. Huber; Stuart D. Jordan; A. I. Poland; Roger J. Thomas; M. Kühne; J. G. Timothy; Donald M. Hassler; O. H. W. Siegmund

The instrument SUMER — Solar Ultraviolet Measurements of Emitted Radiation is designed to investigate structures and associated dynamical processes occurring in the solar atmosphere, from the chromosphere through the transition region to the inner corona, over a temperature range from 104 to 2 x 106 K and above. These observations will permit detailed spectroscopic diagnostics of plasma densities and temperatures in many solar features, and will support penetrating studies of underlying physical processes, including plasma flows, turbulence and wave motions, diffusion transport processes, events associated with solar magnetic activity, atmospheric heating, and solar wind acceleration in the inner corona. Specifically, SUMER will measure profiles and intensities of EUV lines; determine Doppler shifts and line broadenings with high accuracy; provide stigmatic images of the Sun in the EUV with high spatial, spectral, and temporal resolution; and obtain monochromatic maps of the full Sun and the inner corona or selected areas thereof. SUMER will be flown on the Solar and Heliospheric Observatory (SOHO), scheduled for launch in November, 1995. This paper has been written to familiarize solar physicists with SUMER and to demonstrate some command procedures for achieving certain scientific observations.


Solar Physics | 1979

The association of coronal mass ejection transients with other forms of solar activity

R. H. Munro; J. T. Gosling; E. Hildner; R. M. MacQueen; A. I. Poland; C. L. Ross

Coronal mass ejection transients observed with the white light coronagraph on Skylab are found to be associated with several other forms of solar activity. There is a strong correlation between such mass ejection transients and chromospheric Hα activity, with three-quarters of the transients apparently originating in or near active regions. We infer that 40% of transients are associated with flares, 50% are associated with eruptive prominences solely (without flares), and more than 70% are associated with eruptive prominences or filament disappearances (with or without flares). Nine of ten flares which displayed apparent mass ejections of Hα-emitting material from the flare site could be associated with coronal transients. Within each class of activity, the more energetic events are more likely to be associated with an observable mass ejection.


Solar Physics | 1995

The Coronal Diagnostic Spectrometer for the Solar and Heliospheric Observatory

Richard A. Harrison; E. C. Sawyer; M. K. Carter; A. M. Cruise; R. M. Cutler; A. Fludra; R. W. Hayes; B. Kent; J. Lang; D. J. Parker; J. Payne; C. D. Pike; S. C. Peskett; A. G. Richards; J. L. Culhane; K. Norman; A. A. Breeveld; E. R. Breeveld; K. al Janabi; A. J. McCalden; John H. Parkinson; P. Thomas; A. I. Poland; Roger J. Thomas; William T. Thompson; O. Kjeldseth-Moe; P. Brekke; J. Karud; P. Maltby; B. Aschenbach

The Coronal Diagnostic Spectrometer is designed to probe the solar atmosphere through the detection of spectral emission lines in the extreme ultraviolet wavelength range 150–800 A. By observing the intensities of selected lines and line profiles we may derive temperature, density, flow and abundance information for the plasmas in the solar atmosphere. Spatial and temporal resolutions of down to a few arcseconds and seconds, respectively, allow such studies to be made within the fine-scale structure of the solar corona. Furthermore, coverage of large wavelength bands provides the capability for simultaneously observing the properties of plasmas across the wide temperature ranges of the solar atmosphere.


Solar Physics | 1976

The speeds of coronal mass ejection events

J. T. Gosling; E. Hildner; R. M. MacQueen; R. H. Munro; A. I. Poland; C. L. Ross

The outward speeds of mass ejection events observed with the white light coronagraph experiment on Skylab varied over a range extending from less than 100 km s−1 to greater than 1200 km s−1. For all events the average speed within the field of view of the experiment (1.75 to 6 solar radii) was 470 km s−1. Typically, flare associated events (Importance 1 or greater) traveled faster (775 km s−1) than events associated with eruptive prominences (330 km s−1); no flare associated event had a speed less than 360 km s−1, and only one eruptive prominence associated event had a speed greater than 600 km s−1. Speeds versus height profiles for a limited number of events indicate that the leading edges of the ejecta move outward with constant or increasing speeds.Metric wavelength type II and IV radio bursts are associated only with events moving faster than about 400 km s−1; all but two events moving faster than 500 km −1 produced either a type II or IV radio burst or both. This suggests that the characteristic speed with which MHD signals propagate in the lower (1.1 to 3 solar radii) corona, where metric wavelength bursts are generated, is about 400 to 500 km s−1. The fact that the fastest mass ejection events are almost always associated with flares and with metric wavelength type II and IV radio bursts explains why major shock wave disturbances in the solar wind at 1 AU are most often associated with these forms of solar activity rather than with eruptive prominences.


Solar Physics | 1997

FIRST RESULTS OF THE SUMER TELESCOPE AND SPECTROMETER ON SOHO – I. Spectra and Spectroradiometry

K. Wilhelm; P. Lemaire; W. Curdt; U. Schühle; E. Marsch; A. I. Poland; Stuart D. Jordan; R. J. Thomas; Donald M. Hassler; M. C. E. Huber; J.-C. Vial; M. Kühne; O. H. W. Siegmund; Alan H. Gabriel; J. G. Timothy; M. Grewing; U. Feldman; J. Hollandt; P. Brekke

SUMER – the Solar Ultraviolet Measurements of the Emitted Radiation instrument on the Solar and Heliospheric Observatory (SOHO) – observed its first light on January 24, 1996, and subsequently obtained a detailed spectrum with detector B in the wavelength range from 660 to 1490 Å (in first order) inside and above the limb in the north polar coronal hole. Using detector A of the instrument, this range was later extended to 1610 Å. The second-order spectra of detectors A and B cover 330 to 805 Å and are superimposed on the first-order spectra. Many more features and areas of the Sun and their spectra have been observed since, including coronal holes, polar plumes and active regions. The atoms and ions emitting this radiation exist at temperatures below 2 × 106 K and are thus ideally suited to investigate the solar transition region where the temperature increases from chromospheric to coronal values. SUMER can also be operated in a manner such that it makes images or spectroheliograms of different sizes in selected spectral lines. A detailed line profile with spectral resolution elements between 22 and 45 mÅ is produced for each line at each spatial location along the slit. From the line width, intensity and wavelength position we are able to deduce temperature, density, and velocity of the emitting atoms and ions for each emission line and spatial element in the spectroheliogram. Because of the high spectral resolution and low noise of SUMER, we have been able to detect faint lines not previously observed and, in addition, to determine their spectral profiles. SUMER has already recorded over 2000 extreme ultraviolet emission lines and many identifications have been made on the disk and in the corona.SUMER – the Solar Ultraviolet Measurements of the Emitted Radiation instrument on the Solar and Heliospheric Observatory (SOHO) – observed its first light on January 24, 1996, and subsequently obtained a detailed spectrum with detector B in the wavelength range from 660 to 1490 A (in first order) inside and above the limb in the north polar coronal hole. Using detector A of the instrument, this range was later extended to 1610 A. The second-order spectra of detectors A and B cover 330 to 805 A and are superimposed on the first-order spectra. Many more features and areas of the Sun and their spectra have been observed since, including coronal holes, polar plumes and active regions. The atoms and ions emitting this radiation exist at temperatures below 2 × 106 K and are thus ideally suited to investigate the solar transition region where the temperature increases from chromospheric to coronal values. SUMER can also be operated in a manner such that it makes images or spectroheliograms of different sizes in selected spectral lines. A detailed line profile with spectral resolution elements between 22 and 45 mA is produced for each line at each spatial location along the slit. From the line width, intensity and wavelength position we are able to deduce temperature, density, and velocity of the emitting atoms and ions for each emission line and spatial element in the spectroheliogram. Because of the high spectral resolution and low noise of SUMER, we have been able to detect faint lines not previously observed and, in addition, to determine their spectral profiles. SUMER has already recorded over 2000 extreme ultraviolet emission lines and many identifications have been made on the disk and in the corona.


Solar Physics | 1977

A study of the background corona near solar minimum

Kuniji Saito; A. I. Poland; Richard H. Munro

The white light coronagraph data from Skylab is used to investigate the equatorial and polarK andF coronal components during the declining phase of the solar cycle near solar minimum. Measurements of coronal brightness and polarization brightness product between 2.5 and 5.5R⊙ during the period of observation (May 1973 to February 1974) lead to the conclusions that: (1) the equatorial corona is dominated by either streamers or coronal holes seen in projections on the limb approximately 50% and 30% of the time, respectively; (2) despite the domination by streamers and holes, two periods of time were found which were free from the influences of streamers or holes (neither streamers nor holes were within 30° in longitude of the limb); (3) the derived equatorial background density model is less than 15% below the minimum equatorial models of Newkirk (1967) and Saito (1970); (4) a spherically symmetric density model for equatorial coronal holes yields densities one half those of the background density model; and (5) the inferred brightness of theF-corona is constant to within ±10% and ±5% for the equatorial and polar values, respectively, over the observation period. While theF-corona is symmetric at 2R⊙ it begins to show increasing asymmetry beyond this radius such that at 5R⊙ the equatorialF-coronal brightness is 25% greater than the polar brightness.


The Astrophysical Journal | 1974

The outer solar corona as observed from skylab: preliminary results

R.M. MacQueen; J.A. Eddy; J. T. Gosling; E. Hildner; R.H. Munro; G.A. Newkirk; A. I. Poland; C.L. Ross

The white-light coronagraph experiment has made frequent, periodic observations of the solar corona from 1.5 to 6.0 solar radii during the Skylab mission, and these observations will permit the determination of the three-dimensional extent of coronal forms. There are several time scales on which visual changes in coronal structures occur, ranging from approximately one-half rotation to less than hours. A number of events corresponding to the shortest time scale - coronal transients - cause major restructuring of the corona.


Solar Physics | 1997

FIRST RESULTS OF THE SUMER TELESCOPE AND SPECTROMETER ON SOHO – II. Imagery and Data Management

P. Lemaire; K. Wilhelm; W. Curdt; U. Schühle; E. Marsch; A. I. Poland; Stuart D. Jordan; R. J. Thomas; Donald M. Hassler; J.-C. Vial; M. Kühne; M. C. E. Huber; O. H. W. Siegmund; A. H. Gabriel; J. G. Timothy; M. Grewing

SUMER – Solar Ultraviolet Measurements of Emitted Radiation – is not only an extreme ultraviolet (EUV) spectrometer capable of obtaining detailed spectra in the range from 500 to 1610 Å, but, using the telescope mechanisms, it also provides monochromatic images over the full solar disk and beyond, into the corona, with high spatial resolution. We report on some aspects of the observation programmes that have already led us to a new view of many aspects of the Sun, including quiet Sun, chromospheric and transition region network, coronal hole, polar plume, prominence and active region studies. After an introduction, where we compare the SUMER imaging capabilities to previous experiments in our wavelength range, we describe the results of tests performed in order to characterize and optimize the telescope under operational conditions. We find the spatial resolution to be 1.2 arc sec across the slit and 2 arc sec (2 detector pixels) along the slit. Resolution and sensitivity are adequate to provide details on the structure, physical properties, and evolution of several solar features which we then present. Finally some information is given on the data availability and the data management system.


Applied Optics | 1981

New Mauna Loa coronagraph systems.

R. R. Fisher; R. H. Lee; R. M. MacQueen; A. I. Poland

A new set of instruments, consisting of two coronagraph systems, has been installed and is operating at the Mauna Loa Observing Station, Hawaii, operated by the High Altitude Observatory of Boulder, Colorado. The instruments are the 23-cm objective Mark III K-coronameter (K-III) system, a photoelectric instrument used to observe the inner solar corona from 1.2 R(0) to 2.2 R(0) and the 12.5-cm objective Prominence Monitor system used for the detection of H(alpha) limb activity. New features of the K-coronameter system include the use of achromatic wave plates for wide bandpass operation and linear diode array detectors. Raster scans of the coronal image are obtained in 1.5 min for a critical sampling scheme of 20-sec of arc resolution (10 x 10-sec of arc pixels) in the coronal p(B) image. This represents a 350 information gain factor for each detection channel when compared with the previous Mauna Loa K-coronameters.

Collaboration


Dive into the A. I. Poland's collaboration.

Top Co-Authors

Avatar

R. M. MacQueen

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

J. T. Gosling

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

R. H. Munro

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

C. L. Ross

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

E. Hildner

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donald M. Hassler

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar

Stuart D. Jordan

Goddard Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge