A. I. Pushkarev
Tomsk Polytechnic University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. I. Pushkarev.
Instruments and Experimental Techniques | 2013
Yu. I. Isakova; A. I. Pushkarev
Thermal imaging diagnostics of the total energy of a pulsed ion beam and energy-density distribution over the cross section is described. The diagnostics was tested on the TEMП-4M accelerator in the conditions of formation of two pulses: (i) the first plasma-forming pulse is negative (300–500 ns, 100–150 kV) and (ii) the second generated one is positive (150 ns, 250–300 kV). The beam composition includes carbon ions (85%) and protons, and the power density is 0.2–3.0 J/cm2 (for various diodes). The diagnostics was applied in studies of the powerful ion beam, formed by an ion diode with self insulation (two-pulse mode) and external magnetic insulation in the single-pulse mode. The diagnostics was intended to measure the beam energy density in a range of 0.05–5.00 J/cm2 in the absence of erosion and ablation processes on the target. When an infrared camera with a 140 × 160-pixel matrix is used, the spatial resolution is 0.9 mm. The measurement time does not exceed 0.1 s.
Physics of Plasmas | 2011
A. I. Pushkarev; Yu. I. Isakova; V. I. Guselnikov
The results of a study of the generation of a pulsed ion beam of gigawatt power formed by a diode with an explosive-emission potential electrode in a mode of magnetic self-insulation are presented. The studies were conducted at the TEMP-4M ion accelerator set in double pulse formation mode: the first pulse was negative (300–500 ns and 100–150 kV) and the second, positive (150 ns and 250–300 kV). The ion current density was 20–40 A/cm2; the beam composition was protons and carbon ions. It was shown that plasma is effectively formed over the entire working surface of the graphite potential electrode. During the ion beam generation, a condition of magnetic cutoff of electrons along the entire length of the diode (B/Bcr ≥ 4) is fulfilled. Because of the high drift rate, the residence time of the electrons and protons in the anode–cathode gap is 3–5 ns, while for the C+ carbon ions, it is more than 8 ns. This denotes low efficiency of magnetic self-insulation in a diode of such a design. At the same time, it h...
Physics of Plasmas | 2010
A. I. Pushkarev; Yulia I. Isakova; Dmitry V. Vakhrushev
The results of a study on gigawatt power pulsed ion beam parameters are presented here. The pulsed ion beam is formed by a diode with an explosive-emission potential electrode, in magnetic self-isolation mode [A. I. Pushkarev, J. I. Isakova, M. S. Saltimakov et al., Phys. Plasmas 17, 013104 (2010)]. The ion current density is 20–40 A/cm2, the energy of the ions is 200–250 keV, and the beam composition is of protons and carbon ions. Experiments have been performed on the TEMP-4M accelerator, set in double-pulse formation mode. To measure the beam parameters, we used a time-of-flight diagnosis. It is shown that the carbon ion current density, formed in a planar diode with graphite potential electrode, is five to seven times higher than the values calculated from the Child–Langmuir ratio. A model of ion current density amplification in a diode with magnetic self-isolation is proposed. The motion of electrons in the anode-cathode gap is simulated using the program CST PARTICLE STUDIO.
Physics of Plasmas | 2010
A. I. Pushkarev; J. I. Isakova; M. S. Saltimakov; Roman Sazonov
The results of an experimental investigation of a magnetically self-insulated effect in an ion diode in bipolar-pulse mode are presented. The investigations were accomplished at the TEMP-4M accelerator by formation of a first negative pulse (100 ns, 150–200 kV) and a second positive pulse (80 ns, 200–300 kV) [G. E. Remnev et al., Surf. Coat. Technol. 114, 206 (1999)]. Plasma behavior in the anode-cathode gap was analyzed according to the current-voltage characteristics of the diode with a time resolution of 0.5 ns. It is shown that during the discrete emissive surface mode, the magnetic field influence on plasma dynamics is slight. During the space charge limitation mode, the current-voltage characteristics of the diode are well-described by the Child–Langmuir ratio. The drift speed of electrons in the diode exceeds 80 mm/ns and the effect of magnetic insulation is insignificant. It was discovered, when plasma formation at the potential electrode is complete and up until the second positive pulse that the...
Instruments and Experimental Techniques | 2011
Yu. I. Isakova; A. I. Pushkarev; G. E. Kholodnaya
The design, main design formulas, and test results of a small-size differential high-voltage divider are presented. The conditions determining correctness of using the divider for measuring nanosecond high-voltage signals are obtained. It is shown that the differential voltage divider has some limitations in low- and high-frequency regions. Experiments have been performed on a TэY-500 pulsed electron accelerator with the following characteristics: the accelerating voltage is 350–450 kV, the base pulse duration is 100 ns, the rise time is <5 ns, and the complete pulse electron energy is up to 250 J. The pulse repetition rate is 1–3 pulses/s. To restore the shape of the measured voltage, it is necessary that the output signal from the voltage divider be integrated. The measurement error does not exceed ±10%.
Review of Scientific Instruments | 2012
A. I. Pushkarev; Yu. I. Isakova; I. P. Khailov
In this paper we present the analysis of shot to shot reproducibility of the ion beam which is formed by a self-magnetically insulated ion diode with an explosive emission graphite cathode. The experiments were carried out with the TEMP-4M accelerator operating in double-pulse mode: the first pulse is of negative polarity (300-500 ns, 100-150 kV), and this is followed by a second pulse of positive polarity (150 ns, 250-300 kV). The ion current density was 10-70 A/cm(2) depending on the diode geometry. The beam was composed from carbon ions (80%-85%) and protons. It was found that shot to shot variation in the ion current density was about 35%-40%, whilst the diode voltage and current were comparatively stable with the variation limited to no more than 10%. It was shown that focusing of the ion beam can improve the stability of the ion current generation and reduces the variation to 18%-20%. In order to find out the reason for the shot-to-shot variation in ion current density we examined the statistical correlation between the current density of the accelerated beam and other measured characteristics of the diode, such as the accelerating voltage, total current, and first pulse duration. The correlation between the ion current density measured simultaneously at different positions within the cross-section of the beam was also investigated. It was shown that the shot-to-shot variation in ion current density is mainly attributed to the variation in the density of electrons diffusing from the drift region into the A-K gap.
Review of Scientific Instruments | 2013
A. I. Pushkarev; Yu. I. Isakova; Xiao Yu; I. P. Khailov
We have developed the acoustic diagnostics based on a piezoelectric transducer for characterization of high-intensity pulsed ion beams. The diagnostics was tested using the TEMP-4M accelerator (150 ns, 250-300 kV). The beam is composed of C(+) ions (85%) and protons, the beam energy density is 0.5-5 J∕cm(2) (depending on diode geometry). A calibration dependence of the signal from a piezoelectric transducer on the ion beam energy density is obtained using thermal imaging diagnostics. It is shown that the acoustic diagnostics allows for measurement of the beam energy density in the range of 0.1-2 J∕cm(2). The dependence of the beam generated pressure on the input energy density is also determined and compared with the data from literature. The developed acoustic diagnostics do not require sophisticated equipment and can be used for operational control of pulsed ion beam parameters with a repetition rate of 10(3) pulses∕s.
Review of Scientific Instruments | 2012
A. I. Pushkarev; G. Kholodnaya; R. Sazonov; D. Ponomarev
The thermal imaging diagnostics of measuring pulsed electron beam energy density is presented. It provides control of the electron energy spectrum and a measure of the density distribution of the electron beam cross section, the spatial distribution of electrons with energies in the selected range, and the total energy of the electron beam. The diagnostics is based on the thermal imager registration of the imaging electron beam thermal print in a material with low bulk density and low thermal conductivity. Testing of the thermal imaging diagnostics has been conducted on a pulsed electron accelerator TEU-500. The energy of the electrons was 300-500 keV, the density of the electron current was 0.1-0.4 kA/cm(2), the duration of the pulse (at half-height) was 60 ns, and the energy in the pulse was up to 100 J. To register the thermal print, a thermal imager Fluke-Ti10 was used. Testing showed that the sensitivity of a typical thermal imager provides the registration of a pulsed electron beam heat pattern within one pulse with energy density over 0.1 J/cm(2) (or with current density over 10 A/cm(2), pulse duration of 60 ns and electron energy of 400 keV) with the spatial resolution of 0.9-1 mm. In contrast to the method of using radiosensitive (dosimetric) materials, thermal imaging diagnostics does not require either expensive consumables, or plenty of processing time.
Review of Scientific Instruments | 2014
A. I. Pushkarev; Yulia I. Isakova; I. P. Khaylov
The paper presents the results of studies on shot-to-shot performance of a water Blumlein pulse forming line of 1-1.2 kJ of stored energy. The experiments were carried using the TEMP-4M pulsed ion beam accelerator during its operation in both unipolar pulse mode (150 ns, 250-300 kV) and bipolar-pulse mode with the first negative (300-600 ns, 100-150 kV) followed by a second positive (120 ns, 250-300 kV) pulse. The analysis was carried out for two cases when the Blumlein was terminated with a resistive load and with a self-magnetically insulated ion diode. It was found that in bipolar pulse mode the shot-to-shot variation in breakdown voltage of a preliminary spark gap is small, the standard deviation (1σ) does not exceed 2%. At the same time, the shot-to-shot variation in the breakdown voltage of the main spark gap in both bipolar-pulse and unipolar pulse mode is 3-4 times higher than that for the preliminary spark gap. To improve the statistical performance of the main spark gap we changed the regime of its operation from a self-triggered mode to an externally triggered mode. In the new arrangement the first voltage pulse at the output of Blumlein was used to trigger the main spark gap. The new trigatron-type regime of the main spark gap operation showed a good stability of breakdown voltage and thus allowed to stabilize the duration of the first pulse. The standard deviation of the breakdown voltage and duration of the first pulse did not exceed 2% for a set of 50 pulses. The externally triggered mode of the main gap operation also allowed for a decrease in the charging voltage of the Blumlein to a 0.9-0.95 of self-breakdown voltage of the main spark gap while the energy stored in Marx generator was decreased from 4 kJ to 2.5 kJ. At the same time the energy stored in Blumlein remained the same.
Review of Scientific Instruments | 2013
Yu. I. Isakova; A. I. Pushkarev; I. P. Khaylov
The results of a study of the energy transfer in the TEMP-4M pulsed ion beam accelerator are presented. The energy transfer efficiency in the Blumlein and a self-magnetically insulated ion diode was analyzed. Optimization of the design of the accelerator allows for 85% of energy transferred from Blumlein to the diode (including after-pulses), which indicates that the energy loss in Blumlein and spark gaps is insignificant and not exceeds 10%-12%. Most losses occur in the diode. The efficiency of energy supplied to the diode to the energy of accelerated ions is 8%-9% for a planar strip self-magnetic MID, 12%-15% for focusing diode and 20% for a spiral self-magnetic MID.