Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. I. Shapiro is active.

Publication


Featured researches published by A. I. Shapiro.


Atmospheric Chemistry and Physics | 2012

Recent variability of the solar spectral irradiance and its impact on climate modelling

Ilaria Ermolli; Katja Matthes; T. Dudok de Wit; N. A. Krivova; K. Tourpali; M. Weber; Yvonne C. Unruh; Lesley J. Gray; Ulrike Langematz; Peter Pilewskie; E. Rozanov; Werner Schmutz; A. I. Shapiro; S. K. Solanki; Thomas N. Woods

The lack of long and reliable time series of solar spectral irradiance (SSI) measurements makes an accurate quantification of solar contributions to recent climate change difficult. Whereas earlier SSI observations and models provided a qualitatively consistent picture of the SSI variability, recent measurements by the SORCE (SOlar Radiation and Climate Experiment) satellite suggest a significantly stronger variability in the ultraviolet (UV) spectral range and changes in the visible and near-infrared (NIR) bands in anti-phase with the solar cycle. A number of recent chemistry-climate model (CCM) simulations have shown that this might have significant implications on the Earths atmosphere. Motivated by these results, we summarize here our current knowledge of SSI variability and its impact on Earths climate. We present a detailed overview of existing SSI measurements and provide thorough comparison of models available to date. SSI changes influence the Earths atmosphere, both directly, through changes in shortwave (SW) heating and therefore, temperature and ozone distributions in the stratosphere, and indirectly, through dynamical feedbacks. We investigate these direct and indirect effects using several state-of-the art CCM simulations forced with measured and modelled SSI changes. A unique asset of this study is the use of a common comprehensive approach for an issue that is usually addressed separately by different communities. We show that the SORCE measurements are difficult to reconcile with earlier observations and with SSI models. Of the five SSI models discussed here, specifically NRLSSI (Naval Research Laboratory Solar Spectral Irradiance), SATIRE-S (Spectral And Total Irradiance REconstructions for the Satellite era), COSI (COde for Solar Irradiance), SRPM (Solar Radiation Physical Modelling), and OAR (Osservatorio Astronomico di Roma), only one shows a behaviour of the UV and visible irradiance qualitatively resembling that of the recent SORCE measurements. However, the integral of the SSI computed with this model over the entire spectral range does not reproduce the measured cyclical changes of the total solar irradiance, which is an essential requisite for realistic evaluations of solar effects on the Earths climate in CCMs. We show that within the range provided by the recent SSI observations and semi-empirical models discussed here, the NRLSSI model and SORCE observations represent the lower and upper limits in the magnitude of the SSI solar cycle variation. The results of the CCM simulations, forced with the SSI solar cycle variations estimated from the NRLSSI model and from SORCE measurements, show that the direct solar response in the stratosphere is larger for the SORCE than for the NRLSSI data. Correspondingly, larger UV forcing also leads to a larger surface response. Finally, we discuss the reliability of the available data and we propose additional coordinated work, first to build composite SSI data sets out of scattered observations and to refine current SSI models, and second, to run coordinated CCM experiments.


Astronomy and Astrophysics | 2010

NLTE Solar Irradiance Modeling with the COSI code

A. I. Shapiro; W. Schmutz; M. Schoell; Margit Haberreiter; E. Rozanov

Context. The solar irradiance is known to change on time scales of minutes to decades, and it is suspected that its substantial fluctuations are partially responsible for climate variations. Aims. We are developing a solar atmosphere code that allows the physical modeling of the entire solar spectrum composed of quiet Sun and active regions. This code is a tool for modeling the variability of the solar irradiance and understanding its influence on Earth. Methods. We exploit further development of the radiative transfer code COSI that now incorporates the calculation of molecular lines. We validated COSI under the conditions of local thermodynamic equilibrium (LTE) against the synthetic spectra calculated with the ATLAS code. The synthetic solar spectra were also calculated in non-local thermodynamic equilibrium (NLTE) and compared to the available measured spectra. In doing so we have defined the main problems of the modeling, e.g., the lack of opacity in the UV part of the spectrum and the inconsistency in the calculations of the visible continuum level, and we describe a solution to these problems. Results. The improved version of COSI allows us to reach good agreement between the calculated and observed solar spectra as measured by SOLSTICE and SIM onboard the SORCE satellite and ATLAS 3 mission operated from the Space Shuttle. We find that NLTE effects are very important for the modeling of the solar spectrum even in the visual part of the spectrum and for its variability over the entire solar spectrum. In addition to the strong effect on the UV part of the spectrum, NLTE effects influence the concentration of the negative ion of hydrogen, which results in a significant change of the visible continuum level and the irradiance variability.


Astronomy and Astrophysics | 2014

Variability of Sun-like stars: reproducing observed photometric trends

A. I. Shapiro; S. K. Solanki; N. A. Krivova; Werner Schmutz; Will T. Ball; R. Knaack; E. Rozanov; Yvonne C. Unruh

Context. The Sun and stars with low magnetic activity levels, become photometrically brighter when their activity increases. Magnetically more active stars display the opposite behaviour and get fainter when their activity increases. Aims. We reproduce the observed photometric trends in stellar variations with a model that treats stars as hypothetical Suns with coverage by magnetic features di erent from that of the Sun. Methods. The presented model attributes the variability of stellar spectra to the imbalance between the contributions from di erent components of the solar atmosphere, such as dark starspots and bright faculae. A stellar spectrum is calculated from spectra of the individual components, by weighting them with corresponding disc area coverages. The latter are obtained by extrapolating the solar dependences of spot and facular disc area coverages on chromospheric activity to stars with di erent levels of mean chromospheric activity. Results. We have found that the contribution by starspots to the variability increases faster with chromospheric activity than the facular contribution. This causes the transition from faculae-dominated variability and direct activity‐brightness correlation to spotdominated variability and inverse activity‐brightness correlation with increasing chromospheric activity level. We have shown that the regime of the variability also depends on the angle between the stellar rotation axis and the line-of-sight and on the latitudinal distribution of active regions on the stellar surface. Our model can be used as a tool to extrapolate the observed photometric variability of the Sun to Sun-like stars at di erent activity levels, which makes possible the direct comparison between solar and stellar irradiance data.


Astronomy and Astrophysics | 2013

Correlation of spectral solar irradiance with solar activity as measured by VIRGO

Christoph Wehrli; Werner Schmutz; A. I. Shapiro

Context. The variability of Solar Spectral Irradiance over the rotational period and its trend over the solar activity cycle are important for understanding the Sun-Earth connection as well as for observational constraints for solar models. Recently the SIM experiment on SORCE has published an unexpected negative correlation with Total Solar Irradiance of the visible spectral range. It is compensated by a strong and positive variability of the near UV range. Aims. We aim to verify whether the anti-correlated SIM/SORCE-trend in the visible can be confirmed by independent observations of the VIRGO experiment on SOHO. The challenge of all space experiments measuring solar irradiance are sensitivity changes of their sensors due to exposure to intense UV radiation, which are difficult to assess in orbit. Methods. We analyze a 10-year time series of VIRGO sun photometer data between 2002 and 2012. The variability of Spectral Solar Irradiance is correlated with the variability of the Total Solar Irradiance, which is taken as a proxy for solar activity. Results. Observational evidence indicates that after six years only one single long-term process governs the degradation of the backup sun photometer in VIRGO which is operated once in a month. This degradation can be well approximated by a linear function over ten years. The analysis of the residuals from the linear trend yield robust positive correlations of spectral irradiance at 862, 500 and 402 nm with total irradiance. In the analysis of annual averages of these data the positive correlations change into weak negative correlations, but of little statistical significance, for the 862 nm and 402 nm data. At 500 nm the annual spectral data are still positively correlated with Total Solar Irradiance. The persisting positive correlation at 500 nm is in contradiction to the SIM/SORCE results.


Astronomy and Astrophysics | 2016

Are solar brightness variations faculae- or spot-dominated?

A. I. Shapiro; S. K. Solanki; N. A. Krivova; K. L. Yeo; Werner Schmutz

Context. Regular spaceborne measurements have revealed that solar brightness varies on multiple timescales, variations on timescales greater than a day being attributed to a surface magnetic field. Independently, ground-based and spaceborne measurements suggest that Sun-like stars show a similar, but significantly broader pattern of photometric variability. Aims. To understand whether the broader pattern of stellar variations is consistent with the solar paradigm, we assess relative contributions of faculae and spots to solar magnetically-driven brightness variability. We investigate how the solar brightness variability and its facular and spot contributions depend on the wavelength, timescale of variability, and position of the observer relative to the ecliptic plane. Methods. We performed calculations with the SATIRE model, which returns solar brightness with daily cadence from solar disc area coverages of various magnetic features. We took coverages as seen by an Earth-based observer from full-disc SoHO/MDI and SDO/HMI data and projected them to mimic out-of-ecliptic viewing by an appropriate transformation. Results. Moving the observer away from the ecliptic plane increases the amplitude of 11-year variability as it would be seen in Stromgren ( b + y )/2 photometry, but decreases the amplitude of the rotational brightness variations as it would appear in Kepler and CoRoT passbands. The spot and facular contributions to the 11-year solar variability in the Stromgren ( b + y )/2 photometry almost fully compensate each other so that the Sun appears anomalously quiet with respect to its stellar cohort. Such a compensation does not occur on the rotational timescale. Conclusions. The rotational solar brightness variability as it would appear in the Kepler and CoRoT passbands from the ecliptic plane is spot-dominated, but the relative contribution of faculae increases for out-of-ecliptic viewing so that the apparent brightness variations are faculae-dominated for inclinations less than about i = 45°. Over the course of the 11-year activity cycle, the solar brightness variability is faculae-dominated shortwards of 1.2 μ m independently of the inclination.


Astronomy and Astrophysics | 2015

The role of the Fraunhofer lines in solar brightness variability

A. I. Shapiro; S. K. Solanki; N. A. Krivova; Rinat Tagirov; W. Schmutz

The solar brightness varies on timescales from minutes to decades. A clear identification of the physical processes behind such variations is needed for developing and improving physics-based models of solar brightness variability and reconstructing solar brightness in the past. This is, in turn, important for better understanding the solar-terrestrial and solar-stellar connections. We estimate the relative contributions of the continuum, molecular, and atomic lines to the solar brightness variations on different timescales. Our approach is based on the assumption that variability of the solar brightness on timescales greater than a day is driven by the evolution of the solar surface magnetic field. We calculated the solar brightness variations employing the solar disc area coverage of magnetic features deduced from the MDI/SOHO observations. The brightness contrasts of magnetic features relative to the quiet Sun were calculated with a non-LTE radiative transfer code as functions of disc position and wavelength. By consecutive elimination of molecular and atomic lines from the radiative transfer calculations, we assessed the role of these lines in producing solar brightness variability. We show that the variations in Fraunhofer lines define the amplitude of the solar brightness variability on timescales greater than a day and even the phase of the total solar irradiance variability over the 11-year cycle. We also demonstrate that molecular lines make substantial contribution to solar brightness variability on the 11-year activity cycle and centennial timescales. In particular, our model indicates that roughly a quarter of the total solar irradiance variability over the 11-year cycle originates in molecular lines. The maximum of the absolute spectral brightness variability on timescales greater than a day is associated with the CN violet system between 380 and 390 nm.


Journal of Geophysical Research | 2016

Evaluation of simulated photolysis rates and their response to solar irradiance variability

Timofei Sukhodolov; E. Rozanov; William T. Ball; A. F. Bais; K. Tourpali; A. I. Shapiro; P. J. Telford; S. P. Smyshlyaev; Boris Fomin; R. Sander; Sébastien Bossay; Slimane Bekki; Marion Marchand; M. P. Chipperfield; S. Dhomse; Joanna D. Haigh; Thomas Peter; W. Schmutz

The state of the stratospheric ozone layer and the temperature structure of the atmosphere are largely controlled by the solar spectral irradiance (SSI) through its influence on heating and photolysis rates. This study focuses on the uncertainties in the photolysis rate response to solar irradiance variability related to the choice of SSI data set and to the performance of the photolysis codes used in global chemistry-climate models. To estimate the impact of SSI uncertainties, we compared several photolysis rates calculated with the radiative transfer model libRadtran, using SSI calculated with two models and observed during the Solar Radiation and Climate Experiment (SORCE) satellite mission. The importance of the calculated differences in the photolysis rate response for ozone and temperature changes has been estimated using 1D radiative-convective-photochemical model. We demonstrate that the main photolysis reactions, responsible for the solar signal in the stratosphere, are highly sensitive to the spectral distribution of SSI variations. Accordingly, the ozone changes and related ozone-temperature feedback are shown to depend substantially on the SSI dataset being used, which highlights the necessity of obtaining accurate SSI variations. To evaluate the performance of photolysis codes, we compared the results of eight, widely used, photolysis codes against two reference schemes. We show that, in most cases, absolute values of the photolysis rates and their response to applied SSI changes agree within 30%. However, larger errors may appear in specific atmospheric regions because of differences, for instance, in the treatment of Rayleigh scattering, quantum yields or absorption cross-sections.


Astronomy and Astrophysics | 2013

The place of the Sun among the Sun-like stars

A. I. Shapiro; W. Schmutz; Gaël Cessateur; E. Rozanov

Context. Monitoring of the photometric and chromospheric HK emission data series of stars similar to the Sun in age and average activity level showed that there is an empirical correlation between the average stellar chromospheric activity level and the photometric variability. In general, more active stars show larger photometric variability. Interestingly, the measurements and reconstructions of the solar irradiance show that the Sun is significantly less variable than indicated by the empirical relationship. Aims. We aim to identify possible reasons for the Sun to be currently outside of this relationship. Methods. We employed different scenarios of solar HK emission and irradiance variability and compared them with available time series of Sun-like stars. Results. We show that the position of the Sun on the diagram of photometric variability versus chromospheric activity changes with time. The present solar position is different from its temporal mean position as the satellite era of continuous solar irradiance measurements has accidentally coincided with a period of unusually high and stable solar activity. Our analysis suggests that although present solar variability is significantly smaller than indicated by the stellar data, the temporal mean solar variability might be in agreement with the stellar data. We propose that the continuation of the photometric program and its expansion to a larger stellar sample will ultimately allow us to constrain the historical solar variability.


Proceedings of the International Astronomical Union | 2011

Modeling of the atmospheric response to a strong decrease of the solar activity

Eugene Rozanov; Tatiana Egorova; A. I. Shapiro; Werner Schmutz

We estimate the consequences of a potential strong decrease of the solar activity using the model simulations of the future driven by pure anthropogenic forcing as well as its combination with different solar activity related factors: total solar irradiance, spectral solar irradiance, energetic electron precipitation, solar protons and galactic cosmic rays. The comparison of the model simulations shows that introduced strong decrease of solar activity can lead to some delay of the ozone recovery and partially compensate greenhouse warming acting in the direction opposite to anthropogenic effects. The model results also show that all considered solar forcings are important in different atmospheric layers and geographical regions. However, in the global scale the solar irradiance variability can be considered as the most important solar forcing. The obtained results constitute probably the upper limit of the possible solar influence. Development of the better constrained set of future solar forcings is necessary to address the problem of future climate and ozone layer with more confidence.


Journal of Advanced Research | 2013

The Space Weather and Ultraviolet Solar Variability (SWUSV) Microsatellite Mission

Luc Damé; Mustapha Meftah; Alain Hauchecorne; Philippe Keckhut; Alain Sarkissian; Marion Marchand; Abdenour Irbah; Eric Quémerais; Slimane Bekki; Thomas Foujols; Matthieu Kretzschmar; Gaël Cessateur; A. I. Shapiro; Werner Schmutz; S. V. Kuzin; Vladimir A. Slemzin; A. M. Urnov; S. A. Bogachev; Jose M. G. Merayo; Peter Brauer; K. Tsinganos; Antonis M. Paschalis; Ayman Mahrous; Safinaz Khaled; Ahmed Ghitas; Besheir Marzouk; Amal Zaki; Ahmed A. Hady; Rangaiah Kariyappa

We present the ambitions of the SWUSV (Space Weather and Ultraviolet Solar Variability) Microsatellite Mission that encompasses three major scientific objectives: (1) Space Weather including the prediction and detection of major eruptions and coronal mass ejections (Lyman-Alpha and Herzberg continuum imaging); (2) solar forcing on the climate through radiation and their interactions with the local stratosphere (UV spectral irradiance from 180 to 400 nm by bands of 20 nm, plus Lyman-Alpha and the CN bandhead); (3) simultaneous radiative budget of the Earth, UV to IR, with an accuracy better than 1% in differential. The paper briefly outlines the mission and describes the five proposed instruments of the model payload: SUAVE (Solar Ultraviolet Advanced Variability Experiment), an optimized telescope for FUV (Lyman-Alpha) and MUV (200–220 nm Herzberg continuum) imaging (sources of variability); UPR (Ultraviolet Passband Radiometers), with 64 UV filter radiometers; a vector magnetometer; thermal plasma measurements and Langmuir probes; and a total and spectral solar irradiance and Earth radiative budget ensemble (SERB, Solar irradiance & Earth Radiative Budget). SWUSV is proposed as a small mission to CNES and to ESA for a possible flight as early as 2017–2018.

Collaboration


Dive into the A. I. Shapiro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Werner Schmutz

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gérard Thuillier

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gaël Cessateur

Belgian Institute for Space Aeronomy

View shared research outputs
Top Co-Authors

Avatar

D. Bolsée

Belgian Institute for Space Aeronomy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tatiana Egorova

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge