Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. J. Connolly is active.

Publication


Featured researches published by A. J. Connolly.


The Astronomical Journal | 2002

Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample

Michael A. Strauss; David H. Weinberg; Robert H. Lupton; Vijay K. Narayanan; James Annis; Mariangela Bernardi; Michael R. Blanton; Scott Burles; A. J. Connolly; Julianne J. Dalcanton; Mamoru Doi; Daniel J. Eisenstein; Joshua A. Frieman; Masataka Fukugita; James E. Gunn; Željko Ivezić; Stephen M. Kent; Rita S. J. Kim; Gillian R. Knapp; Richard G. Kron; Jeffrey A. Munn; Heidi Jo Newberg; Robert C. Nichol; Sadanori Okamura; Thomas R. Quinn; Michael W. Richmond; David J. Schlegel; Kazuhiro Shimasaku; Mark SubbaRao; Alexander S. Szalay

We describe the algorithm that selects the main sample of galaxies for spectroscopy in the Sloan Digital Sky Survey (SDSS) from the photometric data obtained by the imaging survey. Galaxy photometric properties are measured using the Petrosian magnitude system, which measures flux in apertures determined by the shape of the surface brightness profile. The metric aperture used is essentially independent of cosmological surface brightness dimming, foreground extinction, sky brightness, and the galaxy central surface brightness. The main galaxy sample consists of galaxies with r-band Petrosian magnitudes r ≤ 17.77 and r-band Petrosian half-light surface brightnesses μ50 ≤ 24.5 mag arcsec-2. These cuts select about 90 galaxy targets per square degree, with a median redshift of 0.104. We carry out a number of tests to show that (1) our star-galaxy separation criterion is effective at eliminating nearly all stellar contamination while removing almost no genuine galaxies, (2) the fraction of galaxies eliminated by our surface brightness cut is very small (~0.1%), (3) the completeness of the sample is high, exceeding 99%, and (4) the reproducibility of target selection based on repeated imaging scans is consistent with the expected random photometric errors. The main cause of incompleteness is blending with saturated stars, which becomes more significant for brighter, larger galaxies. The SDSS spectra are of high enough signal-to-noise ratio (S/N > 4 per pixel) that essentially all targeted galaxies (99.9%) yield a reliable redshift (i.e., with statistical error less than 30 km s-1). About 6% of galaxies that satisfy the selection criteria are not observed because they have a companion closer than the 55 minimum separation of spectroscopic fibers, but these galaxies can be accounted for in statistical analyses of clustering or galaxy properties. The uniformity and completeness of the galaxy sample make it ideal for studies of large-scale structure and the characteristics of the galaxy population in the local universe.


The Astronomical Journal | 2001

Composite Quasar Spectra from the Sloan Digital Sky Survey

Daniel E. Vanden Berk; Gordon T. Richards; Amanda Bauer; Michael A. Strauss; Donald P. Schneider; Timothy M. Heckman; Donald G. York; Patrick B. Hall; Xiaohui Fan; Gillian R. Knapp; Scott F. Anderson; James Annis; Neta A. Bahcall; Mariangela Bernardi; John W. Briggs; J. Brinkmann; Robert J. Brunner; Scott Burles; Larry N. Carey; Francisco J. Castander; A. J. Connolly; James H. Crocker; István Csabai; Mamoru Doi; Douglas P. Finkbeiner; Scott D. Friedman; Joshua A. Frieman; Masataka Fukugita; James E. Gunn; Gregory S. Hennessy

We have created a variety of composite quasar spectra using a homogeneous data set of over 2200 spectra from the Sloan Digital Sky Survey (SDSS). The quasar sample spans a redshift range of 0.044 ≤ z ≤ 4.789 and an absolute r magnitude range of -18.0 to -26.5. The input spectra cover an observed wavelength range of 3800–9200 A at a resolution of 1800. The median composite covers a rest-wavelength range from 800 to 8555 A and reaches a peak signal-to-noise ratio of over 300 per 1 A resolution element in the rest frame. We have identified over 80 emission-line features in the spectrum. Emission-line shifts relative to nominal laboratory wavelengths are seen for many of the ionic species. Peak shifts of the broad permitted and semiforbidden lines are strongly correlated with ionization energy, as previously suggested, but we find that the narrow forbidden lines are also shifted by amounts that are strongly correlated with ionization energy. The magnitude of the forbidden line shifts is 100 km s-1, compared with shifts of up to 550 km s-1 for some of the permitted and semiforbidden lines. At wavelengths longer than the Lyα emission, the continuum of the geometric mean composite is well fitted by two power laws, with a break at ≈5000 A. The frequency power-law index, αν, is -0.44 from ≈1300 to 5000 A and -2.45 redward of ≈5000 A. The abrupt change in slope can be accounted for partly by host-galaxy contamination at low redshift. Stellar absorption lines, including higher order Balmer lines, seen in the composites suggest that young or intermediate-age stars make a significant contribution to the light of the host galaxies. Most of the spectrum is populated by blended emission lines, especially in the range 1500–3500 A, which can make the estimation of quasar continua highly uncertain unless large ranges in wavelength are observed. An electronic table of the median quasar template is available.


The Astronomical Journal | 2001

Evidence for reionization at z ∼ 6: Detection of a gunn-peterson trough in a z = 6.28 quasar

Robert H. Becker; Xiaohui Fan; Richard L. White; Michael A. Strauss; Vijay K. Narayanan; Robert H. Lupton; James E. Gunn; James Annis; Neta A. Bahcall; J. Brinkmann; A. J. Connolly; István Csabai; Paul C. Czarapata; Mamoru Doi; Timothy M. Heckman; Gregory S. Hennessy; Željko Ivezić; Gillian R. Knapp; D. Q. Lamb; Timothy A. McKay; Jeffrey A. Munn; Thomas Nash; Robert C. Nichol; Jeffrey R. Pier; Gordon T. Richards; Donald P. Schneider; Chris Stoughton; Alexander S. Szalay; Aniruddha R. Thakar; D. G. York

We present moderate-resolution Keck spectroscopy of quasars at z = 5.82, 5.99, and 6.28, discovered by the Sloan Digital Sky Survey (SDSS). We find that the Ly? absorption in the spectra of these quasars evolves strongly with redshift. To z ~ 5.7, the Ly? absorption evolves as expected from an extrapolation from lower redshifts. However, in the highest-redshift object, SDSSp J103027.10+052455.0 (z = 6.28), the average transmitted flux is 0.0038 ? 0.0026 times that of the continuum level over 8450 ? 20, on the optical depth to Ly? absorption at z = 6. This is a clear detection of a complete Gunn-Peterson trough, caused by neutral hydrogen in the intergalactic medium. Even a small neutral hydrogen fraction in the intergalactic medium would result in an undetectable flux in the Ly? forest region. Therefore, the existence of the Gunn-Peterson trough by itself does not indicate that the quasar is observed prior to the reionization epoch. However, the fast evolution of the mean absorption in these high-redshift quasars suggests that the mean ionizing background along the line of sight to this quasar has declined significantly from z ~ 5 to 6, and the universe is approaching the reionization epoch at z ~ 6.


The Astrophysical Journal | 2006

The Deep Evolutionary Exploratory Probe 2 Galaxy Redshift Survey: The Galaxy Luminosity Function to z ~ 1*

Christopher N. A. Willmer; S. M. Faber; David C. Koo; Benjamin J. Weiner; Jeffrey A. Newman; Alison L. Coil; A. J. Connolly; Charlie Conroy; Michael C. Cooper; M. Davis; Douglas P. Finkbeiner; Brian F. Gerke; Puragra Guhathakurta; Justin Harker; Nick Kaiser; Susan A. Kassin; Nicholas P. Konidaris; Lihwai Lin; Gerard A. Luppino; Darren Madgwick; Kai G. Noeske; Andrew C. Phillips; Renbin Yan

The evolution of the B-band galaxy luminosity function is measured using a sample of more than 11,000 galaxies with spectroscopic redshifts from the DEEP2 Redshift Survey. The rest-frame MB versus U - B color-magnitude diagram of DEEP2 galaxies shows that the color-magnitude bimodality seen in galaxies locally is still present at redshifts z > 1. Dividing the sample at the trough of this color bimodality into predominantly red and blue galaxies, we find that the luminosity function of each galaxy color type evolves differently. Blue counts tend to shift to brighter magnitudes at constant number density, while the red counts remain largely constant at a fixed absolute magnitude. Using Schechter functions with fixed faint-end slopes we find that M for blue galaxies brightens by ~1.3 ? 0.14 mag per unit redshift, with no significant evolution in number density. For red galaxies M brightens somewhat less with redshift, while the formal value of * declines. When the population of blue galaxies is subdivided into two halves using the rest-frame color as the criterion, the measured evolution of both blue subpopulations is very similar.The evolution of the B-band galaxy luminosity function is measured using a sample of more than 11,000 galaxies with spectroscopic redshifts from the DEEP2 Redshift Survey. The rest-frame M_B versus U-B color-magnitude diagram of DEEP2 galaxies shows that the color-magnitude bi-modality seen in galaxies locally is still present at redshifts z > 1. Dividing the sample at the trough of this color bimodality into predominantly red and blue galaxies, we find that the luminosity function of each galaxy color type evolves differently. Blue counts tend to shift to brighter magnitudes at constant number density, while the red counts remain largely constant at a fixed absolute magnitude. Using Schechter functions with fixed faint-end slopes we find that M*_B for blue galaxies brightens by ~ 1.3 magnitudes per unit redshift, with no significant evolution in number density. For red galaxies M*_B brightens somewhat less with redshift, while the formal value of phi* declines. When the population of blue galaxies is subdivided into two halves using the rest-frame color as the criterion, the measured evolution of both blue subpopulations is very similar.


The Astrophysical Journal | 2003

Star Formation Rate Indicators in the Sloan Digital Sky Survey

Andrew M. Hopkins; Christopher J. Miller; Robert C. Nichol; A. J. Connolly; Mariangela Bernardi; Percy Luis Gomez; Tomotsugu Goto; Christy A. Tremonti; J. Brinkmann; Željko Ivezić; D. Q. Lamb

The Sloan Digital Sky Survey (SDSS) first data release provides a database of ?106,000 unique galaxies in the main galaxy sample with measured spectra. A sample of star-forming (SF) galaxies are identified from among the 3079 of these having 1.4 GHz luminosities from FIRST, by using optical spectral diagnostics. Using 1.4 GHz luminosities as a reference star formation rate (SFR) estimator insensitive to obscuration effects, the SFRs derived from the measured SDSS H?, [O II], and u-band luminosities, as well as far-infrared luminosities from IRAS, are compared. It is established that straightforward corrections for obscuration and aperture effects reliably bring the SDSS emission line and photometric SFR estimates into agreement with those at 1.4 GHz, although considerable scatter (?60%) remains in the relations. It thus appears feasible to perform detailed investigations of star formation for large and varied samples of SF galaxies through the available spectroscopic and photometric measurements from the SDSS. We provide herein exact prescriptions for determining the SFR for SDSS galaxies. The expected strong correlation between [O II] and H? line fluxes for SF galaxies is seen, but with a median line flux ratio F/FH? = 0.23, about a factor of 2 smaller than that found in the sample of Kennicutt. This correlation, used in deriving the [O II] SFRs, is consistent with the luminosity-dependent relation found by Jansen and coworkers. The median obscuration for the SDSS SF systems is found to be AH? = 1.2 mag, while for the radio-detected sample the median obscuration is notably higher, 1.6 mag, and with a broader distribution.


The Astrophysical Journal | 2002

Analysis of systematic effects and statistical uncertainties in angular clustering of galaxies from early sloan digital sky survey data

Ryan Scranton; David E. Johnston; Scott Dodelson; Joshua A. Frieman; A. J. Connolly; Daniel J. Eisenstein; James E. Gunn; Lam Hui; Bhuvnesh Jain; Stephen B. H. Kent; Jon Loveday; Vijay K. Narayanan; Robert C. Nichol; Liam O'Connell; Roman Scoccimarro; Ravi K. Sheth; Albert Stebbins; Michael A. Strauss; Alexander S. Szalay; István Szapudi; Max Tegmark; Michael S. Vogeley; Idit Zehavi; James Annis; Neta A. Bahcall; J. Brinkman; István Csabai; Robert B. Hindsley; Zeljko Ivezic; Rita S. J. Kim

The angular distribution of galaxies encodes a wealth of information about large-scale structure. Ultimately, the Sloan Digital Sky Survey (SDSS) will record the angular positions of order of 108 galaxies in five bands, adding significantly to the cosmological constraints. This is the first in a series of papers analyzing a rectangular stripe of 25 × 90° from early SDSS data. We present the angular correlation function for galaxies in four separate magnitude bins on angular scales ranging from 0003 to 15°. Much of the focus of this paper is on potential systematic effects. We show that the final galaxy catalog—with the mask accounting for regions of poor seeing, reddening, bright stars, etc.—is free from external and internal systematic effects for galaxies brighter than r* = 22. Our estimator of the angular correlation function includes the effects of the integral constraint and the mask. The full covariance matrix of errors in these estimates is derived using mock catalogs with further estimates using a number of other methods.


Astrophysical Journal Supplement Series | 2002

Unusual broad absorption line quasars from the Sloan Digital Sky Survey

Patrick B. Hall; Scott F. Anderson; Michael A. Strauss; Donald G. York; Gordon T. Richards; Xiaohui Fan; Gillian R. Knapp; Donald P. Schneider; Daniel E. Vanden Berk; T. R. Geballe; Amanda Bauer; Robert H. Becker; Marc Davis; H.-W. Rix; Robert C. Nichol; Neta A. Bahcall; J. Brinkmann; Robert J. Brunner; A. J. Connolly; István Csabai; Mamoru Doi; Masataka Fukugita; James E. Gunn; Zoltan Haiman; Michael Harvanek; Timothy M. Heckman; Gregory S. Hennessy; Naohisa Inada; Željko Ivezić; David E. Johnston

The Sloan Digital Sky Survey has confirmed the existence of populations of broad absorption line (BAL) quasars with various unusual properties. We present and discuss twenty-three such objects and consider the implications of their wide range of properties for models of BAL outflows and quasars in general. We have discovered one BAL quasar with a record number of absorption lines. Two other similarly complex objects with many narrow troughs show broad Mgii absorption extending longward of their systemic host galaxy redshifts. This can be explained as absorption of an extended continuum source by the rotation-dominated base of a disk wind. Five other objects have absorption which removes an unprecedented ∼90% of all flux shortward of Mgii. The absorption in one of them has varied across the ultraviolet with an amplitude and rate of change as great as ever seen. This same object may also show broad Hβ absorption. Numerous reddened BAL quasars have been found, including at least one reddened mini-BAL quasar with very strong Feii emission. The five reddest objects have continuum reddenings of E(B − V ) ≃ 0.5, and in two of them we find strong evidence that the reddening curve is even steeper than that of the SMC. We have found at least one object with absorption from Feiii but not Feii. This may be due to a high column density of moderately high-ionization gas, but the Feiii level populations must also be affected by some sort of resonance. Finally, we have found two luminous, probably reddened high-redshift objects which may be BAL quasars whose troughs partially cover different regions of the continuum source as a function of velocity.


The Astronomical Journal | 2004

The Galaxy-Mass Correlation Function Measured from Weak Lensing in the Sloan Digital Sky Survey

E. Sheldon; David E. Johnston; Joshua A. Frieman; Ryan Scranton; Timothy A. McKay; A. J. Connolly; Tamas Budavari; Idit Zehavi; Neta A. Bahcall; J. Brinkmann; Masataka Fukugita

We present galaxy-galaxy lensing measurements over scales 0.025 to 10 h-1 Mpc in the Sloan Digital Sky Survey (SDSS). Using a flux-limited sample of 127,001 lens galaxies with spectroscopic redshifts and mean luminosity L ~ L* and 9,020,388 source galaxies with photometric redshifts, we invert the lensing signal to obtain the galaxy-mass correlation function ξgm. We find ξgm is consistent with a power law, ξgm = (r/r0)-γ, with best-fit parameters γ = 1.79 ± 0.06 and r0 = (5.4 ± 0.7)(0.27/Ωm)1/γ h-1 Mpc. At fixed separation, the ratio ξgg/ξgm = b/r, where b is the bias and r is the correlation coefficient. Comparing with the galaxy autocorrelation function for a similarly selected sample of SDSS galaxies, we find that b/r is approximately scale-independent over scales 0.2–6.7 h-1 Mpc, with mean b/r = (1.3 ± 0.2)(Ωm/0.27). We also find no scale dependence in b/r for a volume-limited sample of luminous galaxies (-23.0 < Mr < -21.5). The mean b/r for this sample is b/rVlim = (2.0 ± 0.7)(Ωm/0.27). We split the lens galaxy sample into subsets based on luminosity, color, spectral type, and velocity dispersion and see clear trends of the lensing signal with each of these parameters. The amplitude and logarithmic slope of ξgm increase with galaxy luminosity. For high luminosities (L ~ 5 L*), ξgm deviates significantly from a power law. These trends with luminosity also appear in the subsample of red galaxies, which are more strongly clustered than blue galaxies.


The Astronomical Journal | 2001

Toward a Resolution of the Discrepancy between Different Estimators of Star Formation Rate

Andrew M. Hopkins; A. J. Connolly; Deborah B. Haarsma; L. E. Cram

Different wavelength regimes and methods for estimating the space density of the star formation rate (SFR) result in discrepant values. While it is recognized that ultraviolet (UV) and Hα emission-line data must be corrected for the effects of extinction, the magnitude of the required correction is uncertain. Even when these corrections are made there remains a significant discrepancy between SFRs derived from UV and Hα measurements compared with those derived from far-infrared (FIR) and radio luminosities. Since the FIR-radio–derived SFRs are not affected by extinction and simple corrections to reconcile the UV and Hα measurement with these do not fully account for the discrepancies, a more sophisticated correction may be required. Recent results suggest that at least part of the solution may be a form of extinction that increases with increasing SFR (or luminosity, given the common assumption that SFR is proportional to luminosity). We present an analysis of the effects of a dust reddening dependent on star formation rate applied to estimators of SFR. We show (1) that the discrepancies between Hα and FIR-radio SFR estimates may be explained by such an effect and we present an iterative method for applying the correction and (2) that UV-based estimates of SFR are harder to reconcile with FIR-radio estimates using this method, although the extent of the remaining discrepancy is less than for a non-SFR–dependent correction. Particularly at high redshift, our understanding of extinction at UV wavelengths may require a still more complex explanation.


arXiv: Astrophysics | 2001

Analysis of Systematic Effects and Statistical Uncertainties in Angular Clustering of Galaxies from Early SDSS Data

Ryan Scranton; David E. Johnston; Scott Dodelson; Joshua A. Frieman; A. J. Connolly; Daniel J. Eisenstein; James E. Gunn; Lam Hui; Bhuvnesh Jain; Stephen B. H. Kent; Jon Loveday; Vijay K. Narayanan; Robert C. Nichol; Liam O'Connell; Roman Scoccimarro; Ravi K. Sheth; Albert Stebbins; Michael A. Strauss; Alexander S. Szalay; István Szapudi; Max Tegmark; Michael S. Vogeley; Idit Zehavi

The angular distribution of galaxies encodes a wealth of information about large-scale structure. Ultimately, the Sloan Digital Sky Survey (SDSS) will record the angular positions of order of 108 galaxies in five bands, adding significantly to the cosmological constraints. This is the first in a series of papers analyzing a rectangular stripe of 25 × 90° from early SDSS data. We present the angular correlation function for galaxies in four separate magnitude bins on angular scales ranging from 0003 to 15°. Much of the focus of this paper is on potential systematic effects. We show that the final galaxy catalog—with the mask accounting for regions of poor seeing, reddening, bright stars, etc.—is free from external and internal systematic effects for galaxies brighter than r* = 22. Our estimator of the angular correlation function includes the effects of the integral constraint and the mask. The full covariance matrix of errors in these estimates is derived using mock catalogs with further estimates using a number of other methods.

Collaboration


Dive into the A. J. Connolly's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

István Csabai

Eötvös Loránd University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donald P. Schneider

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge