A. J. de Jong
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. J. de Jong.
Publications Mathématiques de l'IHÉS | 1996
A. J. de Jong
© Publications mathématiques de l’I.H.É.S., 1996, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http:// www.ihes.fr/IHES/Publications/Publications.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.
Journal of the American Mathematical Society | 2000
A. J. de Jong; Frans Oort
In this paper we prove four theorems: one on surface singularities, two on Fcrystals, and one on moduli of p-divisible groups. The reason we put together these results in one paper is that the proofs, as given here, show how these theorems are related. Let us first describe our results. Let (S, 0) be a normal surface singularity over an algebraically closed field of characteristic p. Let S S be a resolution of singularities. Our first result is Theorem 3.2: (1) Any Qp-cohomology class on the link of the singularity extends to the resolution, more precisely
Israel Journal of Mathematics | 2001
A. J. de Jong
AbstractThe conjecture is the following: Over an algebraic variety over a finite field, the geometric monodromy group of every smooth
Duke Mathematical Journal | 2007
A. J. de Jong; Jason Starr
arXiv: Algebraic Geometry | 2017
A. J. de Jong; Jason Starr
\overline {\mathbb{F}_\ell ((t))}
American Journal of Mathematics | 2011
A. J. de Jong; Robert Friedman
Duke Mathematical Journal | 2004
A. J. de Jong
is finite. We indicate how to prove this for rank 2, using results of Drinfeld. We also show that the conjecture implies that certain deformation rings of Galois representations are complete intersection rings.
Inventiones Mathematicae | 1998
A. J. de Jong
Let X be a Fano manifold of pseudo-index ≥ 3 such that c1(X)− 2c2(X) is nef. Irreducibility of some spaces of rational curves on X implies a general point of X is contained in a rational surface.
American Journal of Mathematics | 2003
A. J. de Jong; Jason Starr
We prove divisor class relations for families of genus 0 curves and used them to compute the divisor class of the “virtual” canonical bundle of the Kontsevich space of genus 0 maps to a smooth target. This agrees with the canonical bundle in good cases. This work generalizes Pandharipande’s results in the special case that the target is projective space, [7] (Pandharipande, Trans. Am. Math. Soc. 351(4), 1481–1505, 1999), [8] (Pandharipande, Trans. Am. Math. Soc. 351(4), 1481–1505, 1999). Our method is completely different from Pandharipande’s.
Publications Mathématiques de l'IHÉS | 2011
A. J. de Jong; Xuhua He; Jason Starr
Let