Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. J. Eldorado Riggs is active.

Publication


Featured researches published by A. J. Eldorado Riggs.


Journal of Astronomical Telescopes, Instruments, and Systems | 2016

Shaped pupil Lyot coronagraphs: high-contrast solutions for restricted focal planes

Neil Zimmerman; A. J. Eldorado Riggs; N. Jeremy Kasdin; Alexis Carlotti; Robert J. Vanderbei

Abstract. Coronagraphs of the apodized pupil and shaped pupil varieties use the Fraunhofer diffraction properties of amplitude masks to create regions of high contrast in the vicinity of a target star. Here we present a hybrid coronagraph architecture in which a binary, hard-edged shaped pupil mask replaces the gray, smooth apodizer of the apodized pupil Lyot coronagraph (APLC). For any contrast and bandwidth goal in this configuration, as long as the prescribed region of contrast is restricted to a finite area in the image, a shaped pupil is the apodizer with the highest transmission. We relate the starlight cancellation mechanism to that of the conventional APLC. We introduce a new class of solutions in which the amplitude profile of the Lyot stop, instead of being fixed as a padded replica of the telescope aperture, is jointly optimized with the apodizer. Finally, we describe shaped pupil Lyot coronagraph (SPLC) designs for the baseline architecture of the Wide-Field Infrared Survey Telescope–Astrophysics Focused Telescope Assets (WFIRST-AFTA) coronagraph. These SPLCs help to enable two scientific objectives of the WFIRST-AFTA mission: (1) broadband spectroscopy to characterize exoplanet atmospheres in reflected starlight and (2) debris disk imaging.


Journal of Astronomical Telescopes, Instruments, and Systems | 2015

Demonstration of high contrast with an obscured aperture with the WFIRST-AFTA shaped pupil coronagraph

Eric Cady; Camilo Mejia Prada; Xin An; Kunjithapatham Balasubramanian; Rosemary T. Diaz; N. Jeremy Kasdin; Brian Kern; Andreas Kuhnert; Bijan Nemati; Ilya Poberezhskiy; A. J. Eldorado Riggs; Robert P. Zimmer; Neil Zimmerman

Abstract. The coronagraph instrument on the Wide-Field Infrared Survey Telescope-Astrophysics-Focused Telescope Asset (WFIRST-AFTA) mission study has two coronagraphic architectures, shaped pupil and hybrid Lyot, which may be interchanged for use in different observing scenarios. Each architecture relies on newly developed mask components to function in the presence of the AFTA aperture, and so both must be matured to a high technology readiness level in advance of the mission. A series of milestones were set to track the development of the technologies required for the instrument; we report on completion of WFIRST-AFTA coronagraph milestone 2—a narrowband 10−8 contrast test with static aberrations for the shaped pupil—and the plans for the upcoming broadband coronagraph milestone 5.


Journal of Astronomical Telescopes, Instruments, and Systems | 2016

Recursive starlight and bias estimation for high-contrast imaging with an extended Kalman filter

A. J. Eldorado Riggs; N. Jeremy Kasdin; Tyler D. Groff

Abstract. For imaging faint exoplanets and disks, a coronagraph-equipped observatory needs focal plane wavefront correction to recover high contrast. The most efficient correction methods iteratively estimate the stellar electric field and suppress it with active optics. The estimation requires several images from the science camera per iteration. To maximize the science yield, it is desirable both to have fast wavefront correction and to utilize all the correction images for science target detection. Exoplanets and disks are incoherent with their stars, so a nonlinear estimator is required to estimate both the incoherent intensity and the stellar electric field. Such techniques assume a high level of stability found only on space-based observatories and possibly ground-based telescopes with extreme adaptive optics. In this paper, we implement a nonlinear estimator, the iterated extended Kalman filter (IEKF), to enable fast wavefront correction and a recursive, nearly-optimal estimate of the incoherent light. In Princeton’s High Contrast Imaging Laboratory, we demonstrate that the IEKF allows wavefront correction at least as fast as with a Kalman filter and provides the most accurate detection of a faint companion. The nonlinear IEKF formalism allows us to pursue other strategies such as parameter estimation to improve wavefront correction.


Journal of Astronomical Telescopes, Instruments, and Systems | 2015

WFIRST-AFTA coronagraph shaped pupil masks: design, fabrication, and characterization

Kunjithapatham Balasubramanian; Victor White; Karl Y. Yee; P. M. Echternach; Richard E. Muller; Matthew R. Dickie; Eric Cady; Camilo Mejia Prada; Daniel J. Ryan; Ilya Poberezhskiy; Brian Kern; Hanying Zhou; John E. Krist; Bijan Nemati; A. J. Eldorado Riggs; Neil Zimmerman; N. Jeremy Kasdin

Abstract. NASA WFIRST-AFTA mission study includes a coronagraph instrument to find and characterize exoplanets. Various types of masks could be employed to suppress the host starlight to about 10−9 level contrast over a broad spectrum to enable the coronagraph mission objectives. Such masks for high-contrast internal coronagraphic imaging require various fabrication technologies to meet a wide range of specifications, including precise shapes, micron scale island features, ultralow reflectivity regions, uniformity, wave front quality, and achromaticity. We present the approaches employed at JPL to produce pupil plane and image plane coronagraph masks by combining electron beam, deep reactive ion etching, and black silicon technologies with illustrative examples of each, highlighting milestone accomplishments from the High Contrast Imaging Testbed at JPL and from the High Contrast Imaging Lab at Princeton University.


Journal of Astronomical Telescopes, Instruments, and Systems | 2015

Methods and limitations of focal plane sensing, estimation, and control in high-contrast imaging

Tyler D. Groff; A. J. Eldorado Riggs; Brian Kern; N. Jeremy Kasdin

Abstract. Coronagraphy is a very promising method for directly imaging exoplanets, but the performance of a coronagraph is highly sensitive to quasi-static aberrations within the telescope. The resultant speckles are suppressed in the final focal plane using a wavefront control system that estimates the field at the final focal plane to avoid any noncommon path error. This requires a set of probe images that modulate the field so that it may be estimated. With an estimate of the focal plane electric field, a control law is defined to suppress the speckle field so that the planet can be imaged. Characterizing the planet requires that the speckle field be suppressed simultaneously over the bandpass of interest. The choice of control law, bandpass, estimator, and probing methodology has implications in the control solutions and contrast performance. Here, we compare wavefront probing, estimation, and control algorithms, and describe their practical implementation.


Proceedings of SPIE | 2014

Shaped pupil design for future space telescopes

A. J. Eldorado Riggs; Neil Zimmerman; Alexis Carlotti; N. Jeremy Kasdin; Robert J. Vanderbei

Several years ago at Princeton we invented a technique to optimize shaped pupil (SP) coronagraphs for any telescope aperture. In the last year, our colleagues at the Jet Propulsion Laboratory (JPL) invented a method to produce these non-freestanding mask designs on a substrate. These two advances allowed us to design SPs for two possible space telescopes for the direct imaging of exoplanets and disks, WFIRST-AFTA and Exo-C. In December 2013, the SP was selected along with the hybrid Lyot coronagraph for placement in the AFTA coronagraph instrument. Here we describe our designs and analysis of the SPs being manufactured and tested in the High Contrast Imaging Testbed at JPL.We also explore hybrid SP coronagraph designs for AFTA that would improve performance with minimal or no changes to the optical layout. These possibilities include utilizing a Lyot stop after the focal plane mask or applying large, static deformations to the deformable mirrors (nominally for wavefront correction) already in the system.


Proceedings of SPIE | 2013

Demonstration of symmetric dark holes using two deformable mirrors at the high-contrast imaging testbed

A. J. Eldorado Riggs; Tyler D. Groff; Alexis Carlotti; N. Jeremy Kasdin; Eric Cady; Brian Kern; Andreas Kuhnert

The High Contrast Imaging Laboratory (HCIL) at Princeton has developed several important algorithms and technologies for space-based coronagraphy missions to detect earth-like exoplanets. Before June 2013 the HCIL was the only facility with two deformable mirrors (DMs) in series for focal plane wavefront control, which allows for quasi-static speckle correction on both sides of the image plane. From June through August 2013, the High- Contrast Imaging Testbed (HCIT) at JPL had a second DM installed. In this paper we report on the results of our Technology Development for Exoplanet Missions project to achieve high contrast in two symmetric dark holes using a shaped pupil (SP) coronagraph at the HCIT. Our previous experiment with a similar SP at the HCIT in 2007 yielded single-sided dark holes. That experiment utilized an iterative, batch-process wavefront estimator and Electric Field Conjugation for wavefront control. Our current tests use the faster Kalman filter estimator and the stroke minimization control algorithm. We use the same ripple-style SPs as in the previous HCIT experiment because that mask manufacturing technique proved successful. Our tests of symmetric dark holes in monochromatic light at the HCIT demonstrate Princeton’s steady improvements in wavefront control and estimation techniques for a space-based coronagraphy mission.


Proceedings of SPIE | 2015

Wavefront correction with Kalman filtering for the WFIRST-AFTA coronagraph instrument

A. J. Eldorado Riggs; N. Jeremy Kasdin; Tyler D. Groff

The only way to characterize most exoplanets spectrally is via direct imaging. For example, the Coronagraph Instrument (CGI) on the proposed Wide-Field Infrared Survey Telescope-Astrophysics Focused Telescope Assets (WFIRST-AFTA) mission plans to image and characterize several cool gas giants around nearby stars. The integration time on these faint exoplanets will be many hours to days. A crucial assumption for mission planning is that the time required to dig a dark hole (a region of high star-to-planet contrast) with deformable mirrors is small compared to science integration time. The science camera must be used as the wavefront sensor to avoid non-common path aberrations, but this approach can be quite time intensive. Several estimation images are required to build an estimate of the starlight electric field before it can be partially corrected, and this process is repeated iteratively until high contrast is reached. Here we present simulated results of batch process and recursive wavefront estimation schemes. In particular, we test a Kalman filter and an iterative extended Kalman filter (IEKF) to reduce the total exposure time and improve the robustness of wavefront correction for the WFIRST-AFTA CGI. An IEKF or other nonlinear filter also allows recursive, real-time estimation of sources incoherent with the star, such as exoplanets and disks, and may therefore reduce detection uncertainty.


Journal of Astronomical Telescopes, Instruments, and Systems | 2015

Coronagraph-integrated wavefront sensing with a sparse aperture mask

Hari Subedi; Neil Zimmerman; N. Jeremy Kasdin; Kathleen Cavanagh; A. J. Eldorado Riggs

Abstract. Stellar coronagraph performance is highly sensitive to optical aberrations. In order to effectively suppress starlight for exoplanet imaging applications, low-order wavefront aberrations entering a coronagraph, such as tip-tilt, defocus, and coma, must be determined and compensated. Previous authors have established the utility of pupil-plane masks (both nonredundant/sparse-aperture and generally asymmetric aperture masks) for wavefront sensing (WFS). Here, we show how a sparse aperture mask (SAM) can be integrated with a coronagraph to measure low-order differential phase aberrations. Starlight rejected by the coronagraph’s focal plane stop is collimated to a relay pupil, where the mask forms an interference fringe pattern on a subsequent detector. Our numerical Fourier propagation models show that the information encoded in the fringe intensity distortions is sufficient to accurately discriminate and estimate Zernike phase modes extending from tip-tilt up to radial degree n=5, with amplitude up to λ/20 RMS. The SAM sensor can be integrated with both Lyot and shaped pupil coronagraphs at no detriment to the science beam quality. We characterize the reconstruction accuracy and the performance under low flux/short exposure time conditions, and place it in context of other coronagraph WFS schemes.


Proceedings of SPIE | 2014

Optimal wavefront estimation of incoherent sources

A. J. Eldorado Riggs; N. Jeremy Kasdin; Tyler D. Groff

Direct imaging is in general necessary to characterize exoplanets and disks. A coronagraph is an instrument used to create a dim (high-contrast) region in a star’s PSF where faint companions can be detected. All coronagraphic high-contrast imaging systems use one or more deformable mirrors (DMs) to correct quasi-static aberrations and recover contrast in the focal plane. Simulations show that existing wavefront control algorithms can correct for diffracted starlight in just a few iterations, but in practice tens or hundreds of control iterations are needed to achieve high contrast. The discrepancy largely arises from the fact that simulations have perfect knowledge of the wavefront and DM actuation. Thus, wavefront correction algorithms are currently limited by the quality and speed of wavefront estimates. Exposures in space will take orders of magnitude more time than any calculations, so a nonlinear estimation method that needs fewer images but more computational time would be advantageous. In addition, current wavefront correction routines seek only to reduce diffracted starlight. Here we present nonlinear estimation algorithms that include optimal estimation of sources incoherent with a star such as exoplanets and debris disks.

Collaboration


Dive into the A. J. Eldorado Riggs's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Cady

Jet Propulsion Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neil Zimmerman

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

Brian Kern

Jet Propulsion Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Garreth Ruane

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexis Carlotti

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge