A.J. Hendriks
Radboud University Nijmegen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A.J. Hendriks.
Environmental Pollution | 2001
A Heikens; Willie J.G.M. Peijnenburg; A.J. Hendriks
In this literature study, accumulation data of metals in terrestrial invertebrates were collected and compared (Arthropoda and Lumbricidae). Based on total soil concentrations and body concentrations, regression equations were calculated for each metal (Cd, Cu, Pb and Zn) and each taxonomic group. We also tried to find out whether or not accumulation levels of metals in Lumbricidae are representative for all of the studied terrestrial invertebrates. Taxonomic groups could be ordered according to the extent of metal accumulation. Significant differences in accumulation levels of a factor 2-12 were found between taxonomic groups. Overall, metal concentrations were high in Isopoda and low in Coleoptera. The concentrations in Lumbricidae were in between. It should be kept in mind that the data for Lumbricidae were mainly derived from laboratory experiments, while the data for other groups were derived from field studies. The internal Pb, Cd and Cu concentration increased with the soil concentration for most taxonomic groups in the order Pb > Cd > Cu. Body concentrations of Zn were quite constant over a range of soil concentrations. The differences in accumulation level between taxonomic groups show the relevance of including detailed information on feeding behaviour in risk assessment for invertebrate-eating animals.
Environmental Science & Technology | 2010
A. Fedorenkova; J.A. Vonk; H.J.R. Lenders; N.J. Ouborg; A.M. Breure; A.J. Hendriks
Ecotoxicogenomics might help solving open questions that cannot be answered by standard ecotoxicity tests currently used in environmental risk assessment. Changes in gene expression are claimed to serve potentially as early warning indicators for environmental effects and as sensitive and specific ecotoxicological end points. Ecotoxicogenomics focus on the lowest rather than the highest levels of biological organization. Our aim was to explore the links between gene expression responses and population level responses, both mechanistically (conceptual framework) and correlatively (Species Sensitivity Distribution). The effects of cadmium on aquatic species were compared for gene level responses (Lowest Observed Effect Concentrations) and individual level responses (median Lethal Concentrations, LC(50), and No Observed Effect Concentrations, NOEC). Responses in gene expression were on average four times above the NOEC and eleven times below the LC(50) values. Currently, use of gene expression changes as early warning indicators of environmental effects is not underpinned due to a lack of data. To confirm the sensitivity claimed by ecotoxicogenomics more testing at low concentrations is needed. From the conceptual framework, we conclude that for a mechanistic gene population link in risk management, research is required that includes at least one meaningful end point at each level of organization.
Society & Natural Resources | 2010
P. Vugteveen; H.J.R. Lenders; J. L. A. Devilee; R.S.E.W. Leuven; R. J. H. M. van der Veeren; Mark Wiering; A.J. Hendriks
Current water management issues are characterized by factual uncertainty, relating to limits of scientific knowledge, and value uncertainty, relating to the policy process of making subjective choices. Developing and informing approaches for integrated water management (IWM) requires bringing facts and values together. This study examines the way value orientations differentiate themselves among IWM stakeholders and assesses implications for the scientific support and policy context of integrated approaches. Using Q-methodology, we identify five orientations that represent characteristically different ways of valuing water systems and their management by stakeholders in terms of cognitive, ethical, and affective value priorities. The findings indicate that scientific support to substantiate IWM needs to be extended to include social sciences and that preferences regarding the outcome of policy strategies may differ between stakeholders due to divergent orientations. Decision makers can benefit from the understanding of different value orientations to resolve conflicts, develop planning scenarios, and build consensus.
Environmental Science & Technology | 2011
Marloes Caduff; Mark A. J. Huijbregts; H.J. Althaus; A.J. Hendriks
To perform life-cycle assessment studies, data on the production and use of the products is required. However, often only few data or measurements are available. Estimation of properties can be performed by applying scaling relationships. In many disciplines, they are used to either predict data or to search for underlying patterns, but they have not been considered in the context of product assessments hitherto. The goal of this study was to explore size scaling for commonly used energy conversion equipment, that is, boilers, engines, and generators. The variables mass M, fuel consumption Q, and costs C were related to power P. The established power-law relationships were M = 10(0.73.. 1.89)P(0.64.. 1.23) (R(2) ≥ 0.94), Q = 10(0.06.. 0.68)P(0.82.. 1.02) (R(2) ≥ 0.98) and C = 10(2.46.. 2.86)P(0.83.. 0.85) (R(2) ≥ 0.83). Mass versus power and costs versus power showed that none of the equipment types scaled isometrically, that is, with a slope of 1. Fuel consumption versus power scaled approximately isometrically for steam boilers, the other equipments scaled significantly lower than 1. This nonlinear scaling behavior induces a significant size effect. The power laws we established can be applied to scale the mass, fuel consumption and costs of energy conversion equipments up or down. Our findings suggest that empirical scaling laws can be used to estimate properties, particularly relevant in studies focusing on early product development for which generally only little information is available.
Environmental Science & Technology | 2010
Karin Veltman; Mark A. J. Huijbregts; A.J. Hendriks
Both biotic ligand models (BLM) and bioaccumulation models aim to quantify metal exposure based on mechanistic knowledge, but key factors included in the description of metal uptake differ between the two approaches. Here, we present a quantitative comparison of both approaches and show that BLM and bioaccumulation kinetics can be merged into a common mechanistic framework for metal uptake in aquatic organisms. Our results show that metal-specific absorption efficiencies calculated from BLM-parameters for freshwater fish are highly comparable, i.e. within a factor of 2.4 for silver, cadmium, copper, and zinc, to bioaccumulation-absorption efficiencies for predominantly marine fish. Conditional affinity constants are significantly related to the metal-specific covalent index. Additionally, the affinity constants of calcium, cadmium, copper, sodium, and zinc are significantly comparable across aquatic species, including molluscs, daphnids, and fish. This suggests that affinity constants can be estimated from the covalent index, and constants can be extrapolated across species. A new model is proposed that integrates the combined effect of metal chemodynamics, as speciation, competition, and ligand affinity, and species characteristics, as size, on metal uptake by aquatic organisms. An important direction for further research is the quantitative comparison of the proposed model with acute toxicity values for organisms belonging to different size classes.
Environmental Pollution | 2015
Ligia B. Azevedo; R. van Zelm; R.S.E.W. Leuven; A.J. Hendriks; Mark A. J. Huijbregts
Eutrophication is a key water quality issue triggered by increasing nitrogen (N) and phosphorus (P) levels and potentially posing risks to freshwater biota. We predicted the probability that an invertebrate species within a community assemblage becomes absent due to nutrient stress as the ecological risk (ER) for European lakes and streams subjected to N and P pollution from 1985 to 2011. The ER was calculated as a function of species-specific tolerances to NO3(-) and total P concentrations and water quality monitoring data. Lake and stream ER averaged 50% in the last monitored year (i.e. 2011) and we observed a decrease by 22% and 38% in lake and stream ER (respectively) of river basins since 1985. Additionally, the ER from N stress surpassed that of P in both freshwater systems. The ER can be applied to identify river basins most subjected to eutrophication risks and the main drivers of impacts.
Journal of Fish Biology | 2013
P.M.F. Elshout; L. M. Dionisio Pires; R.S.E.W. Leuven; S.E. Wendelaar Bonga; A.J. Hendriks
Data on low dissolved oxygen (DO₂) tolerance of freshwater fish species of north-western Europe were used to create species sensitivity distributions (SSD). Lowest observed effect concentrations (LOEC) and 100% lethal concentrations (LC₁₀₀) data were collected from the scientific literature. Comparisons were made among life stages as well as between native and exotic species. In addition, lethal DO₂ concentrations were compared to oxygen concentrations corresponding to maximum tolerable water temperatures of the same species. Fish eggs and embryos were the least tolerant. Juveniles had a significantly lower mean LOEC than adults, but there was no difference in mean LC₁₀₀ between the two groups. The difference in lethal oxygen concentrations between adults and juveniles was largest for three salmonids, although it remains uncertain if this was a result of smoltification. There were no significant differences between native and exotic species; however, data on exotics are limited. DO₂ concentrations converted from maximum tolerable water temperatures were 3·9 times higher than the measured lethal DO₂ concentrations, which may reflect changes in respiration rates (Q₁₀) and may also relate to the simplicity of the model used.
Environmental Pollution | 2015
J. Matthews; Aafke M. Schipper; A.J. Hendriks; T.T.Y. Le; A. B. de Vaate; G. van der Velde; R.S.E.W. Leuven
Bioinvasions are a major cause of biodiversity and ecosystem changes. The rapid range expansion of the invasive quagga mussel (Dreissena rostriformis bugensis) causing a dominance shift from zebra mussels (Dreissena polymorpha) to quagga mussels, may alter the risk of secondary poisoning to predators. Mussel samples were collected from various water bodies in the Netherlands, divided into size classes, and analysed for metal concentrations. Concentrations of nickel and copper in quagga mussels were significantly lower than in zebra mussels overall. In lakes, quagga mussels contained significantly higher concentrations of aluminium, iron and lead yet significantly lower concentrations of zinc66, cadmium111, copper, nickel, cobalt and molybdenum than zebra mussels. In the river water type quagga mussel soft tissues contained significantly lower concentrations of zinc66. Our results suggest that a dominance shift from zebra to quagga mussels may reduce metal exposure of predator species.
Freshwater Science | 2013
G.A. van Duinen; K. Vermonden; P. L. E. Bodelier; A.J. Hendriks; R.S.E.W. Leuven; Jack J. Middelburg; G. van der Velde; W.C.E.P. Verberk
Abstract. Raised bog pools are extremely nutrient poor and rich in humic substances, and these features limit primary production. To assess the base of the invertebrate food web in bog pools we measured the stable-isotopic signatures of primary producers, dead organic matter, and invertebrates, and the composition and stable-C-isotope ratio of their phospholipid-derived fatty acids (PLFAs). The stable-isotopic signatures showed the presence of multiple trophic levels and differential use of basal food sources by the invertebrates among and within species, individuals, and size classes. Carnivorous and omnivorous invertebrates assimilated polyunsaturated fatty acids (PUFAs) derived from algae, and possibly macrophytes, and fatty acids that are specific for methane-oxidizing bacteria (MOB). Part of the bacterial biomass conveyed to higher trophic levels in the bog pools originated from MOB. Pelagic zooplankton appeared to rely more on bacteria, whereas insects relied more on algae. Periphyton, a primary algal food source, was the basal food source most depleted in 13C and was inferred to sustain ≥½ the invertebrate food web. The relatively depleted &dgr;13C values of PUFAs in invertebrates suggest a role for methane-derived C. We argue that the CO2 assimilated by the algae could be derived from MOB. Therefore, depleted &dgr;13C values of invertebrates do not necessarily indicate a direct pathway between MOB and these invertebrates because algae may form an intermediate level.
Scientific Reports | 2016
H.J.R. Lenders; T. P. M. Chamuleau; A.J. Hendriks; R. C. G. M. Lauwerier; R.S.E.W. Leuven; W.C.E.P. Verberk
The collapse of Atlantic salmon (Salmo salar) stocks throughout North-Western Europe is generally ascribed to large-scale river regulation, water pollution and over-fishing in the 19th and 20th century. However, other causes have rarely been quantified, especially those acting before the 19th century. By analysing historical fishery, market and tax statistics, independently confirmed by archaeozoological records, we demonstrate that populations declined by up to 90% during the transitional period between the Early Middle Ages (c. 450–900 AD) and Early Modern Times (c. 1600 AD). These dramatic declines coincided with improvements in watermill technology and their geographical expansion across Europe. Our extrapolations suggest that historical Atlantic salmon runs must have once been very abundant indeed. The historical perspective presented here contributes to a better understanding of the primary factors that led to major declines in salmon populations. Such understanding provides an essential basis for the effective ecological rehabilitation of freshwater ecosystems.