Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. J. Hulbert is active.

Publication


Featured researches published by A. J. Hulbert.


Biological Reviews | 2005

Dietary fats and membrane function: implications for metabolism and disease

A. J. Hulbert; Nigel Turner; L. H. Storlien; P. L. Else

Lipids play varied and critical roles in metabolism, with function dramatically modulated by the individual fatty acid moities in complex lipid entities. In particular, the fatty acid composition of membrane lipids greatly influences membrane function. Here we consider the role of dietary fatty acid profile on membrane composition and, in turn, its impact on prevalent disease clusters of the metabolic syndrome and mental illness. Applying the classical physiological conformer‐regulator paradigm to quantify the influence of dietary fats on membrane lipid composition (i.e. where the membrane variable is plotted against the same variable in the environment ‐ in this case dietary fats), membrane lipid composition appears as a predominantly regulated parameter. Membranes remain relatively constant in their saturated (SFA) and monounsaturated (MUFA) fatty acid levels over a wide range of dietary variation for these fatty acids. Membrane composition was found to be more responsive to n‐6 and n‐3 polyunsaturated fatty acid (PUFA) levels in the diet and most sensitive to n‐3 PUFA and to the n‐3/n‐6 ratio. These differential responses are probably due to the fact that both n‐6 and n‐3 PUFA classes cannot be synthesised de novo by higher animals. Diet‐induced modifications in membrane lipid composition are associated with changes in the rates of membrane‐linked cellular processes that are major contributors to energy metabolism. For example, in the intrinsic activity of fundamental processes such as the Na+/K+ pump and proton pump‐leak cycle. Equally, dietary lipid profile impacts substantially on diseases of the metabolic syndrome with evidence accruing for changes in metabolic rate and neuropeptide regulation (thus influencing both sides of the energy balance equation), in second messenger generation and in gene expression influencing a range of glucose and lipid handling pathways. Finally, there is a growing literature relating changes in dietary fatty acid profile to many aspects of mental health. The understanding of dietary lipid profile and its influence on membrane function in relation to metabolic dysregulation has exciting potential for the prevention and treatment of a range of prevalent disease states.


Biochimica et Biophysica Acta | 1994

Characteristics of mitochondrial proton leak and control of oxidative phosphorylation in the major oxygen-consuming tissues of the rat

David F.S. Rolfe; A. J. Hulbert; Martin D. Brand

Maintenance of an electrochemical proton gradient across the mitochondrial inner membrane against the significant proton permeability of the membrane accounts for 25-30% of resting oxygen consumption in hepatocytes. It has been proposed that proton leak could be a significant contributor to resting metabolic rate in mammals if it were present in other tissues. Mitochondria were isolated from the major oxygen-consuming tissues (liver, kidney, brain and skeletal muscle) of the rat. In each tissue, the mitochondria showed significant proton leak with the same characteristic non-linear dependence on membrane potential. Liver and kidney mitochondria showed similar membrane proton permeability per mg of mitochondrial protein; brain and muscle permeabilities were greater when expressed in this way. Differences in the kinetic response of the substrate oxidation and phosphorylating systems to membrane potential were observed. The substrate oxidation system was more active in kidney, brain and skeletal muscle mitochondria than in liver mitochondria per mg of mitochondrial protein. Liver and kidney phosphorylating systems were less active than brain and skeletal muscle per mg of mitochondrial protein. The control of oxidative phosphorylation was also assessed. The distribution of control in mitochondria isolated from the four tissue types was found to be similar.


Comparative Biochemistry and Physiology B | 1998

The Proton Permeability of the Inner Membrane of Liver Mitochondria from Ectothermic and Endothermic Vertebrates and from Obese Rats: Correlations with Standard Metabolic Rate and Phospholipid Fatty Acid Composition

Paul S. Brookes; Julie A. Buckingham; Ana Maria Tenreiro; A. J. Hulbert; Martin D. Brand

We measured the proton leak across the inner membrane of liver mitochondria isolated from six different vertebrate species and from obese and control Zucker rats. Proton leak at 37 degrees C was similar in rat and pigeon, and in obese and control Zucker rats. Compared to rat, it was lower in cane toad, shingleback lizard, and the Madeiran lizard Lacerta dugessi. Proton leak at 20 degrees C was similar in xenopus toad and higher in rainbow trout, compared to rat. In general, proton permeability and substrate oxidation activity were greater in liver mitochondria from endotherms than those from ectotherms. Analysis of this and previous data showed that proton leak per milligram of mitochondrial protein correlated with standard metabolic rate, and proton leak per milligram of inner membrane phospholipid correlated with 11 phospholipid fatty acid compositional parameters, including unsaturation index.


Physiological and Biochemical Zoology | 2004

Basal Metabolic Rate: History, Composition, Regulation, and Usefulness

A. J. Hulbert; P. L. Else

The concept of basal metabolic rate (BMR) was developed to compare the metabolic rate of animals and initially was important in a clinical context as a means of determining thyroid status of humans. It was also important in defining the allometric relationship between body mass and metabolic rate of mammals. The BMR of mammals varies with body mass, with the same allometric exponent as field metabolic rate and with many physiological and biochemical rates. The membrane pacemaker theory proposes that the fatty acid composition of membrane bilayers is an important determinant of a species BMR. In both mammals and birds, membrane polyunsaturation decreases and monounsaturation increases with increasing body mass and a decrease in mass‐specific BMR. The secretion and production of thyroid hormones in mammals are related to body mass, with the allometric exponent similar to BMR; yet there is no body size–related variation in either total or free concentrations of thyroid hormones in plasma of mammals. It is suggested that in different‐sized mammals, the secretion/production of thyroid hormones is a result of BMR differences rather than their cause. BMR is a useful concept in some situations but not in others.


Naturwissenschaften | 2003

Docosahexaenoic acid (DHA) content of membranes determines molecular activity of the sodium pump: implications for disease states and metabolism

Nigel Turner; Paul L. Else; A. J. Hulbert

The omega-3 polyunsaturate, docosahexaenoic acid (DHA), plays a number of biologically important roles, particularly in the nervous system, where it is found in very high concentrations in cell membranes. In infants DHA is required for the growth and functional development of the brain, with a deficiency resulting in a variety of learning and cognitive disorders. During adulthood DHA maintains normal brain function and recent evidence suggests that reduced DHA intake in adults is linked with a number of neurological disorders including schizophrenia and depression. Here we report a high positive correlation between the molecular activity (ATP min−1) of individual Na+K+ATPase units and the content of DHA in the surrounding membrane bilayer. This represents a fundamental relationship underlying metabolic activity, but may also represent a link between reduced levels of DHA and neurological dysfunction, as up to 60% of energy consumption in the brain is linked to the Na+K+ATPase enzyme.


Biochemical Journal | 2003

Proton conductance and fatty acyl composition of liver mitochondria correlates with body mass in birds.

Martin D. Brand; Nigel Turner; Augustine Ocloo; Paul L. Else; A. J. Hulbert

The proton conductance of isolated liver mitochondria correlates significantly with body mass in mammals, but not in ectotherms. To establish whether the correlation in mammals is general for endotherms or mammal-specific, we measured proton conductance in mitochondria from birds, the other main group of endotherms, using birds varying in mass over a wide range (nearly 3000-fold), from 13 g zebra finches to 35 kg emus. Respiratory control ratios were higher in mitochondria from larger birds. Mitochondrial proton conductance in liver mitochondria from birds correlated strongly with body mass [respiration rate per mg of protein driving proton leak at 170 mV being 44.7 times (body mass in g)(-0.19)], thus suggesting a general relationship between body mass and proton conductance in endotherms. Mitochondria from larger birds had the same or perhaps greater surface area per mg of protein than mitochondria from smaller birds. Hence, the lower proton conductance was caused not by surface area changes but by some change in the properties of the inner membrane. Liver mitochondria from larger birds had phospholipid fatty acyl chains that were less polyunsaturated and more monounsaturated when compared with those from smaller birds. Phospholipid fatty acyl polyunsaturation correlated positively and monounsaturation correlated negatively with proton conductance. These correlations echo those seen in mammalian liver mitochondria, suggesting that they too are general for endotherms.


Comparative Biochemistry and Physiology B | 2002

The acyl composition of mammalian phospholipids: an allometric analysis

A. J. Hulbert; Tahira Rana; Patrice Couture

Data concerning the acyl composition of tissue phospholipids from mammal species, ranging in size from the shrew (7 g) to cattle (370 kg), has been collated from the literature and analysed allometrically. Phospholipids from heart, skeletal muscle, liver and kidney exhibited similar allometric trends whereby phospholipids had a significant decrease in unsaturation index (number of double bonds per 100 acyl chains) as species body size increased whilst there was no change in the percent of unsaturated acyl chains. Whilst total polyunsaturate content did not change with body mass, both heart and skeletal muscle phospholipids showed a significant allometric decrease in the omega-3 polyunsaturate content. The content of the highly polyunsaturated docosahexaenoic acid (22:6 n-3) in phospholipids showed significant and substantial allometric decline with increasing body mass in all four tissues (exponents ranged from -0.19 in liver to -0.40 in skeletal muscle). Brain phospholipids showed no allometric trends in acyl composition and were highly polyunsaturated in all species. These trends are discussed in light of the hypothesis that the relative content of polyunsaturated acyl chains in membranes, and especially docosahexaenoate (22:6 n-3), can act as a membrane pacemaker for metabolic activity.


Journal of Comparative Physiology B-biochemical Systemic and Environmental Physiology | 1985

An allometric comparison of the mitochondria of mammalian and reptilian tissues: The implications for the evolution of endothermy

Paul L. Else; A. J. Hulbert

SummaryThe effects of body size and phylogeny on metabolic capacities were examined by comparing the mitochondrial capacities of 6 mammalian and 4 reptilian species representing 100-fold body weight ranges. The mammals examined included 3 eutherian, 2 marsupial and a monotreme species and the reptiles 2 saurian, 1 crocodilian and 1 testudine species. The tissues examined were liver, kidney, brain, heart, lung and skeletal muscle. Allometric equations were derived for tissue weights, mitochondrial volume densities, internal mitochondrial membrane surface area densities, tissue mitochondrial membrane surface areas both per gram and per total tissue and summated tissue mitochondrial membrane surface areas.For the mammals and reptiles studied a 100% increase in body size resulted in average increases of 68% in internal organ size and 107% in skeletal muscle mass. Similarly, total organ mitochondrial membrane surface areas increase in mammals and reptiles by an average 54% and for skeletal muscle by an average 96%. These values are similar to increases in standard (54 and 71%) and maximum (73 and 77%) organismal metabolism values found by other authors for mammals and reptiles respectively.Although the allometric exponents (or rates of change with increasing body size) of the mitochondrial parameters in mammals and reptiles are statistically the same, in general the total amount of mitochondrial membrane surface area in the mammalian tissues are four times greater than found in the reptilian tissues. These differences were not the result of any single ‘quantum’ factor but are the result of the mammals having relatively larger tissues with a greater proportion of their volume occupied by mitochondria and to a lesser extent increases in the internal mitochondrial membrane surface area densities. Mitochondrial volume density from this present study would appear to be the major factor involved in changing weight specific metabolism of tissues both as a result of changes in body size and in the evolution of endothermy in mammals from reptiles.


Current Opinion in Clinical Nutrition and Metabolic Care | 1998

Polyunsaturated fatty acids, membrane function and metabolic diseases such as diabetes and obesity.

Len H. Storlien; A. J. Hulbert; Paul L. Else

Lipids play an extraordinary range of roles in normal and deranged metabolism. In diabetes and obesity, lipids have often been seen just as impacting on the energy balance equation. New data are extending our understanding of how lipid subclasses influence carbohydrate and lipid metabolism at multiple control points: from the modulation of membrane proteins to the regulation of gene transcription.


Experimental Gerontology | 2007

Membrane phospholipid composition may contribute to exceptional longevity of the naked mole-rat (Heterocephalus glaber): A comparative study using shotgun lipidomics

Todd W. Mitchell; Rochelle Buffenstein; A. J. Hulbert

Phospholipids containing highly polyunsaturated fatty acids are particularly prone to peroxidation and membrane composition may therefore influence longevity. Phospholipid molecules, in particular those containing docosahexaenoic acid (DHA), from the skeletal muscle, heart, liver and liver mitochondria were identified and quantified using mass-spectrometry shotgun lipidomics in two similar-sized rodents that show an approximately 9-fold difference in maximum lifespan. The naked mole rat is the longest-living rodent known with a maximum lifespan of >28 years. Total phospholipid distribution is similar in tissues of both species; DHA is only found in phosphatidylcholines (PC), phosphatidylethanolamines (PE) and phosphatidylserines (PS), and DHA is relatively more concentrated in PE than PC. Naked mole-rats have fewer molecular species of both PC and PE than do mice. DHA-containing phospholipids represent 27-57% of all phospholipids in mice but only 2-6% in naked mole-rats. Furthermore, while mice have small amounts of di-polyunsaturated PC and PE, these are lacking in naked mole-rats. Vinyl ether-linked phospholipids (plasmalogens) are higher in naked mole-rat tissues than in mice. The lower level of DHA-containing phospholipids suggests a lower susceptibility to peroxidative damage in membranes of naked mole-rats compared to mice. Whereas the high level of plasmalogens might enhance membrane antioxidant protection in naked mole-rats compared to mice. Both characteristics possibly contribute to the exceptional longevity of naked mole-rats and may indicate a special role for peroxisomes in this extended longevity.

Collaboration


Dive into the A. J. Hulbert's collaboration.

Top Co-Authors

Avatar

Paul L. Else

University of Wollongong

View shared research outputs
Top Co-Authors

Avatar

Nigel Turner

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin D. Brand

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar

Stephen J. Blanksby

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. L. Else

University of Wollongong

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge