A. J. Khanna
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. J. Khanna.
Medical Physics | 2011
Sebastian Schafer; Sajendra Nithiananthan; Daniel J. Mirota; Ali Uneri; J. W. Stayman; Wojciech Zbijewski; C Schmidgunst; Gerhard Kleinszig; A. J. Khanna; Jeffrey H. Siewerdsen
PURPOSE A flat-panel detector based mobile isocentric C-arm for cone-beam CT (CBCT) has been developed to allow intraoperative 3D imaging with sub-millimeter spatial resolution and soft-tissue visibility. Image quality and radiation dose were evaluated in spinal surgery, commonly relying on lower-performance image intensifier based mobile C-arms. Scan protocols were developed for task-specific imaging at minimum dose, in-room exposure was evaluated, and integration of the imaging system with a surgical guidance system was demonstrated in preclinical studies of minimally invasive spine surgery. METHODS Radiation dose was assessed as a function of kilovolt (peak) (80-120 kVp) and milliampere second using thoracic and lumbar spine dosimetry phantoms. In-room radiation exposure was measured throughout the operating room for various CBCT scan protocols. Image quality was assessed using tissue-equivalent inserts in chest and abdomen phantoms to evaluate bone and soft-tissue contrast-to-noise ratio as a function of dose, and task-specific protocols (i.e., visualization of bone or soft-tissues) were defined. Results were applied in preclinical studies using a cadaveric torso simulating minimally invasive, transpedicular surgery. RESULTS Task-specific CBCT protocols identified include: thoracic bone visualization (100 kVp; 60 mAs; 1.8 mGy); lumbar bone visualization (100 kVp; 130 mAs; 3.2 mGy); thoracic soft-tissue visualization (100 kVp; 230 mAs; 4.3 mGy); and lumbar soft-tissue visualization (120 kVp; 460 mAs; 10.6 mGy) - each at (0.3 × 0.3 × 0.9 mm3 ) voxel size. Alternative lower-dose, lower-resolution soft-tissue visualization protocols were identified (100 kVp; 230 mAs; 5.1 mGy) for the lumbar region at (0.3 × 0.3 × 1.5 mm3 ) voxel size. Half-scan orbit of the C-arm (x-ray tube traversing under the table) was dosimetrically advantageous (prepatient attenuation) with a nonuniform dose distribution (∼2 × higher at the entrance side than at isocenter, and ∼3-4 lower at the exit side). The in-room dose (microsievert) per unit scan dose (milligray) ranged from ∼21 μSv/mGy on average at tableside to ∼0.1 μSv/mGy at 2.0 m distance to isocenter. All protocols involve surgical staff stepping behind a shield wall for each CBCT scan, therefore imparting ∼zero dose to staff. Protocol implementation in preclinical cadaveric studies demonstrate integration of the C-arm with a navigation system for spine surgery guidance-specifically, minimally invasive vertebroplasty in which the system provided accurate guidance and visualization of needle placement and bone cement distribution. Cumulative dose including multiple intraoperative scans was ∼11.5 mGy for CBCT-guided thoracic vertebroplasty and ∼23.2 mGy for lumbar vertebroplasty, with dose to staff at tableside reduced to ∼1 min of fluoroscopy time (∼40-60 μSv), compared to 5-11 min for the conventional approach. CONCLUSIONS Intraoperative CBCT using a high-performance mobile C-arm prototype demonstrates image quality suitable to guidance of spine surgery, with task-specific protocols providing an important basis for minimizing radiation dose, while maintaining image quality sufficient for surgical guidance. Images demonstrate a significant advance in spatial resolution and soft-tissue visibility, and CBCT guidance offers the potential to reduce fluoroscopy reliance, reducing cumulative dose to patient and staff. Integration with a surgical guidance system demonstrates precise tracking and visualization in up-to-date images (alleviating reliance on preoperative images only), including detection of errors or suboptimal surgical outcomes in the operating room.
Physics in Medicine and Biology | 2012
Yoshito Otake; Sebastian Schafer; J. W. Stayman; Wojciech Zbijewski; Gerhard Kleinszig; Rainer Graumann; A. J. Khanna; Jeffrey H. Siewerdsen
Surgical targeting of the incorrect vertebral level (wrong-level surgery) is among the more common wrong-site surgical errors, attributed primarily to the lack of uniquely identifiable radiographic landmarks in the mid-thoracic spine. The conventional localization method involves manual counting of vertebral bodies under fluoroscopy, is prone to human error and carries additional time and dose. We propose an image registration and visualization system (referred to as LevelCheck), for decision support in spine surgery by automatically labeling vertebral levels in fluoroscopy using a GPU-accelerated, intensity-based 3D-2D (namely CT-to-fluoroscopy) registration. A gradient information (GI) similarity metric and a CMA-ES optimizer were chosen due to their robustness and inherent suitability for parallelization. Simulation studies involved ten patient CT datasets from which 50 000 simulated fluoroscopic images were generated from C-arm poses selected to approximate the C-arm operator and positioning variability. Physical experiments used an anthropomorphic chest phantom imaged under real fluoroscopy. The registration accuracy was evaluated as the mean projection distance (mPD) between the estimated and true center of vertebral levels. Trials were defined as successful if the estimated position was within the projection of the vertebral body (namely mPD <5 mm). Simulation studies showed a success rate of 99.998% (1 failure in 50 000 trials) and computation time of 4.7 s on a midrange GPU. Analysis of failure modes identified cases of false local optima in the search space arising from longitudinal periodicity in vertebral structures. Physical experiments demonstrated the robustness of the algorithm against quantum noise and x-ray scatter. The ability to automatically localize target anatomy in fluoroscopy in near-real-time could be valuable in reducing the occurrence of wrong-site surgery while helping to reduce radiation exposure. The method is applicable beyond the specific case of vertebral labeling, since any structure defined in pre-operative (or intra-operative) CT or cone-beam CT can be automatically registered to the fluoroscopic scene.
IEEE Transactions on Medical Imaging | 2012
J. W. Stayman; Yoshito Otake; Jerry L. Prince; A. J. Khanna; Jeffrey H. Siewerdsen
The likelihood of finding manufactured components (surgical tools, implants, etc.) within a tomographic field-of-view has been steadily increasing. One reason is the aging population and proliferation of prosthetic devices, such that more people undergoing diagnostic imaging have existing implants, particularly hip and knee implants. Another reason is that use of intraoperative imaging (e.g., cone-beam CT) for surgical guidance is increasing, wherein surgical tools and devices such as screws and plates are placed within or near to the target anatomy. When these components contain metal, the reconstructed volumes are likely to contain severe artifacts that adversely affect the image quality in tissues both near and far from the component. Because physical models of such components exist, there is a unique opportunity to integrate this knowledge into the reconstruction algorithm to reduce these artifacts. We present a model-based penalized-likelihood estimation approach that explicitly incorporates known information about component geometry and composition. The approach uses an alternating maximization method that jointly estimates the anatomy and the position and pose of each of the known components. We demonstrate that the proposed method can produce nearly artifact-free images even near the boundary of a metal implant in simulated vertebral pedicle screw reconstructions and even under conditions of substantial photon starvation. The simultaneous estimation of device pose also provides quantitative information on device placement that could be valuable to quality assurance and verification of treatment delivery.
Physics in Medicine and Biology | 2014
Ali Uneri; Yoshito Otake; Adam S. Wang; Gerhard Kleinszig; Sebastian Vogt; A. J. Khanna; Jeffrey H. Siewerdsen
An algorithm for intensity-based 3D-2D registration of CT and x-ray projections is evaluated, specifically using single- or dual-projection views to provide 3D localization. The registration framework employs the gradient information similarity metric and covariance matrix adaptation evolution strategy to solve for the patient pose in six degrees of freedom. Registration performance was evaluated in an anthropomorphic phantom and cadaver, using C-arm projection views acquired at angular separation, Δθ, ranging from ∼0°-180° at variable C-arm magnification. Registration accuracy was assessed in terms of 2D projection distance error and 3D target registration error (TRE) and compared to that of an electromagnetic (EM) tracker. The results indicate that angular separation as small as Δθ ∼10°-20° achieved TRE <2 mm with 95% confidence, comparable or superior to that of the EM tracker. The method allows direct registration of preoperative CT and planning data to intraoperative fluoroscopy, providing 3D localization free from conventional limitations associated with external fiducial markers, stereotactic frames, trackers and manual registration.
Physics in Medicine and Biology | 2014
S. Reaungamornrat; Adam S. Wang; Ali Uneri; Yoshito Otake; A. J. Khanna; Jeffrey H. Siewerdsen
Image-guided spine surgery (IGSS) is associated with reduced co-morbidity and improved surgical outcome. However, precise localization of target anatomy and adjacent nerves and vessels relative to planning information (e.g., device trajectories) can be challenged by anatomical deformation. Rigid registration alone fails to account for deformation associated with changes in spine curvature, and conventional deformable registration fails to account for rigidity of the vertebrae, causing unrealistic distortions in the registered image that can confound high-precision surgery. We developed and evaluated a deformable registration method capable of preserving rigidity of bones while resolving the deformation of surrounding soft tissue. The method aligns preoperative CT to intraoperative cone-beam CT (CBCT) using free-form deformation (FFD) with constraints on rigid body motion imposed according to a simple intensity threshold of bone intensities. The constraints enforced three properties of a rigid transformation-namely, constraints on affinity (AC), orthogonality (OC), and properness (PC). The method also incorporated an injectivity constraint (IC) to preserve topology. Physical experiments involving phantoms, an ovine spine, and a human cadaver as well as digital simulations were performed to evaluate the sensitivity to registration parameters, preservation of rigid body morphology, and overall registration accuracy of constrained FFD in comparison to conventional unconstrained FFD (uFFD) and Demons registration. FFD with orthogonality and injectivity constraints (denoted FFD+OC+IC) demonstrated improved performance compared to uFFD and Demons. Affinity and properness constraints offered little or no additional improvement. The FFD+OC+IC method preserved rigid body morphology at near-ideal values of zero dilatation (D = 0.05, compared to 0.39 and 0.56 for uFFD and Demons, respectively) and shear (S = 0.08, compared to 0.36 and 0.44 for uFFD and Demons, respectively). Target registration error (TRE) was similarly improved for FFD+OC+IC (0.7 mm), compared to 1.4 and 1.8 mm for uFFD and Demons. Results were validated in human cadaver studies using CT and CBCT images, with FFD+OC+IC providing excellent preservation of rigid morphology and equivalent or improved TRE. The approach therefore overcomes distortions intrinsic to uFFD and could better facilitate high-precision IGSS.
Physics in Medicine and Biology | 2014
Ali Uneri; Adam S. Wang; Yoshito Otake; Gerhard Kleinszig; Sebastian Vogt; A. J. Khanna; Gary L. Gallia; Ziya L. Gokaslan; Jeffrey H. Siewerdsen
An algorithm for intensity-based 3D-2D registration of CT and C-arm fluoroscopy is evaluated for use in surgical guidance, specifically considering the low-dose limits of the fluoroscopic x-ray projections. The registration method is based on a framework using the covariance matrix adaptation evolution strategy (CMA-ES) to identify the 3D patient pose that maximizes the gradient information similarity metric. Registration performance was evaluated in an anthropomorphic head phantom emulating intracranial neurosurgery, using target registration error (TRE) to characterize accuracy and robustness in terms of 95% confidence upper bound in comparison to that of an infrared surgical tracking system. Three clinical scenarios were considered: (1) single-view image+guidance, wherein a single x-ray projection is used for visualization and 3D-2D guidance; (2) dual-view image+guidance, wherein one projection is acquired for visualization, combined with a second (lower-dose) projection acquired at a different C-arm angle for 3D-2D guidance; and (3) dual-view guidance, wherein both projections are acquired at low dose for the purpose of 3D-2D guidance alone (not visualization). In each case, registration accuracy was evaluated as a function of the entrance surface dose associated with the projection view(s). Results indicate that images acquired at a dose as low as 4 μGy (approximately one-tenth the dose of a typical fluoroscopic frame) were sufficient to provide TRE comparable or superior to that of conventional surgical tracking, allowing 3D-2D guidance at a level of dose that is at most 10% greater than conventional fluoroscopy (scenario #2) and potentially reducing the dose to approximately 20% of the level in a conventional fluoroscopically guided procedure (scenario #3).
Proceedings of SPIE | 2013
Adam S. Wang; Sebastian Schafer; J. W. Stayman; Yoshi Otake; Marc S. Sussman; A. J. Khanna; Gary L. Gallia; Jeffrey H. Siewerdsen
C-arm cone-beam CT is an emerging tool for intraoperative imaging, but currently exhibits modest soft-tissue imaging capability. This work adapts a spectrum of statistical iterative reconstruction approaches to C-arm CBCT and investigates performance in imaging of low-contrast tasks pertinent to soft-tissue surgical guidance. Experiments involved a mobile C-arm and phantoms and cadavers presenting soft-tissue structures imaged using 3D FBP and penalized likelihood reconstruction. Statistical reconstruction - especially non-quadratic PL - boosted soft-tissue image quality through reduction of noise and artifacts, therefore presenting promise for interventional imaging. Further investigation of task-specific performance may overcome conventional tradeoffs in noise, resolution, and dose.
Physics in Medicine and Biology | 2017
Ali Uneri; T. De Silva; J. Goerres; M. Jacobson; M. D. Ketcha; S. Reaungamornrat; Gerhard Kleinszig; Sebastian Vogt; A. J. Khanna; Greg Osgood; Jean Paul Wolinsky; Jeffrey H. Siewerdsen
Intraoperative x-ray radiography/fluoroscopy is commonly used to assess the placement of surgical devices in the operating room (e.g. spine pedicle screws), but qualitative interpretation can fail to reliably detect suboptimal delivery and/or breach of adjacent critical structures. We present a 3D-2D image registration method wherein intraoperative radiographs are leveraged in combination with prior knowledge of the patient and surgical components for quantitative assessment of device placement and more rigorous quality assurance (QA) of the surgical product. The algorithm is based on known-component registration (KC-Reg) in which patient-specific preoperative CT and parametric component models are used. The registration performs optimization of gradient similarity, removes the need for offline geometric calibration of the C-arm, and simultaneously solves for multiple component bodies, thereby allowing QA in a single step (e.g. spinal construct with 4-20 screws). Performance was tested in a spine phantom, and first clinical results are reported for QA of transpedicle screws delivered in a patient undergoing thoracolumbar spine surgery. Simultaneous registration of ten pedicle screws (five contralateral pairs) demonstrated mean target registration error (TRE) of 1.1 ± 0.1 mm at the screw tip and 0.7 ± 0.4° in angulation when a prior geometric calibration was used. The calibration-free formulation, with the aid of component collision constraints, achieved TRE of 1.4 ± 0.6 mm. In all cases, a statistically significant improvement (p < 0.05) was observed for the simultaneous solutions in comparison to previously reported sequential solution of individual components. Initial application in clinical data in spine surgery demonstrated TRE of 2.7 ± 2.6 mm and 1.5 ± 0.8°. The KC-Reg algorithm offers an independent check and quantitative QA of the surgical product using radiographic/fluoroscopic views acquired within standard OR workflow. Such intraoperative assessment could improve quality and safety, provide the opportunity to revise suboptimal constructs in the OR, and reduce the frequency of revision surgery.
Physics in Medicine and Biology | 2017
T. De Silva; Ali Uneri; M. D. Ketcha; S. Reaungamornrat; J. Goerres; M. Jacobson; Sebastian Vogt; Gerhard Kleinszig; A. J. Khanna; Jean Paul Wolinsky; Jeffrey H. Siewerdsen
Decision support to assist in target vertebra localization could provide a useful aid to safe and effective spine surgery. Previous solutions have shown 3D-2D registration of preoperative CT to intraoperative radiographs to reliably annotate vertebral labels for assistance during level localization. We present an algorithm (referred to as MR-LevelCheck) to perform 3D-2D registration based on a preoperative MRI to accommodate the increasingly common clinical scenario in which MRI is used instead of CT for preoperative planning. Straightforward adaptation of gradient/intensity-based methods appropriate to CT-to-radiograph registration is confounded by large mismatch and noncorrespondence in image intensity between MRI and radiographs. The proposed method overcomes such challenges with a simple vertebrae segmentation step using vertebra centroids as seed points (automatically defined within existing workflow). Forwards projections are computed using segmented MRI and registered to radiographs via gradient orientation (GO) similarity and the CMA-ES (covariance-matrix-adaptation evolutionary-strategy) optimizer. The method was tested in an IRB-approved study involving 10 patients undergoing cervical, thoracic, or lumbar spine surgery following preoperative MRI. The method successfully registered each preoperative MRI to intraoperative radiographs and maintained desirable properties of robustness against image content mismatch and large capture range. Robust registration performance was achieved with projection distance error (PDE) (median ± IQR) = 4.3 ± 2.6 mm (median ± IQR) and 0% failure rate. Segmentation accuracy for the continuous max-flow method yielded dice coefficient = 88.1 ± 5.2, accuracy = 90.6 ± 5.7, RMSE = 1.8 ± 0.6 mm, and contour affinity ratio (CAR) = 0.82 ± 0.08. Registration performance was found to be robust for segmentation methods exhibiting RMSE <3 mm and CAR >0.50. The MR-LevelCheck method provides a potentially valuable extension to a previously developed decision support tool for spine surgery target localization by extending its utility to preoperative MRI while maintaining characteristics of accuracy and robustness.
Proceedings of SPIE | 2015
A. Uneri; J. W. Stayman; T. De Silva; Adam S. Wang; G. Kleinszig; S. Vogt; A. J. Khanna; Jean Paul Wolinsky; Ziya L. Gokaslan; Jeffrey H. Siewerdsen
Purpose. To extend the functionality of radiographic / fluoroscopic imaging systems already within standard spine surgery workflow to: 1) provide guidance of surgical device analogous to an external tracking system; and 2) provide intraoperative quality assurance (QA) of the surgical product. Methods. Using fast, robust 3D-2D registration in combination with 3D models of known components (surgical devices), the 3D pose determination was solved to relate known components to 2D projection images and 3D preoperative CT in near-real-time. Exact and parametric models of the components were used as input to the algorithm to evaluate the effects of model fidelity. The proposed algorithm employs the covariance matrix adaptation evolution strategy (CMA-ES) to maximize gradient correlation (GC) between measured projections and simulated forward projections of components. Geometric accuracy was evaluated in a spine phantom in terms of target registration error at the tool tip (TREx), and angular deviation (TREΦ) from planned trajectory. Results. Transpedicle surgical devices (probe tool and spine screws) were successfully guided with TREx<2 mm and TREΦ <0.5° given projection views separated by at least >30° (easily accommodated on a mobile C-arm). QA of the surgical product based on 3D-2D registration demonstrated the detection of pedicle screw breach with TREx<1 mm, demonstrating a trend of improved accuracy correlated to the fidelity of the component model employed. Conclusions. 3D-2D registration combined with 3D models of known surgical components provides a novel method for near-real-time guidance and quality assurance using a mobile C-arm without external trackers or fiducial markers. Ongoing work includes determination of optimal views based on component shape and trajectory, improved robustness to anatomical deformation, and expanded preclinical testing in spine and intracranial surgeries.