Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. J. van Marle is active.

Publication


Featured researches published by A. J. van Marle.


Journal of Computational Physics | 2012

Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics

Rony Keppens; Zakaria Meliani; A. J. van Marle; Peter Delmont; A. Vlasis; B. van der Holst

Relativistic hydro and magnetohydrodynamics provide continuum fluid descriptions for gas and plasma dynamics throughout the visible universe. We present an overview of state-of-the-art modeling in special relativistic regimes, targeting strong shock-dominated flows with speeds approaching the speed of light. Significant progress in its numerical modeling emerged in the last two decades, and we highlight specifically the need for grid-adaptive, shock-capturing treatments found in several contemporary codes in active use and development. Our discussion highlights one such code, MPI-AMRVAC (Message-Passing Interface-Adaptive Mesh Refinement Versatile Advection Code), but includes generic strategies for allowing massively parallel, block-tree adaptive simulations in any dimensionality. We provide implementation details reflecting the underlying data structures as used in MPI-AMRVAC. Parallelization strategies and scaling efficiencies are discussed for representative applications, along with guidelines for data formats suitable for parallel I/O. Refinement strategies available in MPI-AMRVAC are presented, which cover error estimators in use in many modern AMR frameworks. A test suite for relativistic hydro and magnetohydrodynamics is provided, chosen to cover all aspects encountered in high-resolution, shock-governed astrophysical applications. This test suite provides ample examples highlighting the advantages of AMR in relativistic flow problems.


Astronomy and Astrophysics | 2014

Pulsating red giant stars in eccentric binary systems discovered from Kepler space-based photometry : A sample study and the analysis of KIC 5006817

P. G. Beck; K. Hambleton; J. Vos; T. Kallinger; S. Bloemen; A. Tkachenko; R. A. García; Roy Ostensen; Conny Aerts; D. W. Kurtz; J. De Ridder; S. Hekker; K. Pavlovski; S. Mathur; K. De Smedt; A. Derekas; E. Corsaro; B. Mosser; H. Van Winckel; Daniel Huber; P. Degroote; G. R. Davies; Andrej Prsa; J. Debosscher; Y. Elsworth; P. Nemeth; Lionel Siess; V. S. Schmid; P. I. Pápics; B. L. de Vries

Context. The unparalleled photometric data obtained by NASA’s Kepler Space Telescope has led to improved understanding of red giant stars and binary stars. Seismology allows us to constrain the properties of red giants. In addition to eclipsing binaries, eccentric non-eclipsing binaries that exhibit ellipsoidal modulations have been detected with Kepler. Aims. We aim to study the properties of eccentric binary systems containing a red giant star and to derive the parameters of the primary giant component. Methods. We applied asteroseismic techniques to determine the masses and radii of the primary component of each system. For a selected target, light and radial velocity curve modelling techniques were applied to extract the parameters of the system and its primary component. Stellar evolution and its effects on the evolution of the binary system were studied from theoretical models. Results. The paper presents the asteroseismic analysis of 18 pulsating red giants in eccentric binary systems, for which masses and radii were constrained. The orbital periods of these systems range from 20 to 440 days. The results of our ongoing radial velocity monitoring programme with the Hermes spectrograph reveal an eccentricity range of e= 0.2 to 0.76. As a case study we present a detailed analysis of KIC 5006817, whose rich oscillation spectrum allows for detailed seismic analysis. From seismology we constrain the rotational period of the envelope to be at least 165 d, which is roughly twice the orbital period. The stellar core rotates 13 times faster than the surface. From the spectrum and radial velocities we expect that the Doppler beaming signal should have a maximum amplitude of 300 ppm in the light curve. Fixing the mass and radius to the asteroseismically determined values, we find from our binary modelling a value of the gravity darkening exponent that is significantly larger than expected. Through binary modelling, we determine the mass of the secondary component to be 0.29± 0.03 M . Conclusions. For KIC 5006817 we exclude pseudo-synchronous rotation of the red giant with the orbit. The comparison of the results from seismology and modelling of the light curve shows a possible alignment of the rotational and orbital axis at the 2σ level. Red giant eccentric systems could be progenitors of cataclysmic variables and hot subdwarf B stars.Context. The unparalleled photometric data obtained by NASA’s Kepler Space Telescope has led to improved understanding of red giant stars and binary stars. Seismology allows us to constrain the properties of red giants. In addition to eclipsing binaries, eccentric non-eclipsing binaries that exhibit ellipsoidal modulations have been detected with Kepler. Aims. We aim to study the properties of eccentric binary systems containing a red giant star and to derive the parameters of the primary giant component. Methods. We applied asteroseismic techniques to determine the masses and radii of the primary component of each system. For a selected target, light and radial velocity curve modelling techniques were applied to extract the parameters of the system and its primary component. Stellar evolution and its effects on the evolution of the binary system were studied from theoretical models. Results. The paper presents the asteroseismic analysis of 18 pulsating red giants in eccentric binary systems, for which masses and radii were constrained. The orbital periods of these systems range from 20 to 440 days. The results of our ongoing radial velocity monitoring programme with the Hermes spectrograph reveal an eccentricity range of e = 0.2 to 0.76. As a case study we present a detailed analysis of KIC 5006817, whose rich oscillation spectrum allows for detailed seismic analysis. From seismology we constrain the rotational period of the envelope to be at least 165 d, which is roughly twice the orbital period. The stellar core rotates 13 times faster than the surface. From the spectrum and radial velocities we expect that the Doppler beaming signal should have a maximum amplitude of 300 ppm in the light curve. Fixing the mass and radius to the asteroseismically determined values, we find from our binary modelling a value of the gravity darkening exponent that is significantly larger than expected. Through binary modelling, we determine the mass of the secondary component to be 0.29 ± 0.03 M� . Conclusions. For KIC 5006817 we exclude pseudo-synchronous rotation of the red giant with the orbit. The comparison of the results from seismology and modelling of the light curve shows a possible alignment of the rotational and orbital axis at the 2σ level. Red giant eccentric systems could be progenitors of cataclysmic variables and hot subdwarf B stars.


The Astrophysical Journal | 2011

Computing the Dust Distribution in the Bow Shock of a Fast-moving, Evolved Star

A. J. van Marle; Zakaria Meliani; Rony Keppens; Leen Decin

We study the hydrodynamical behavior occurring in the turbulent interaction zone of a fast-moving red supergiant star, where the circumstellar and interstellar material collide. In this wind-interstellar-medium collision, the familiar bow shock, contact discontinuity, and wind termination shock morphology form, with localized instability development. Our model includes a detailed treatment of dust grains in the stellar wind and takes into account the drag forces between dust and gas. The dust is treated as pressureless gas components binned per grain size, for which we use 10 representative grain size bins. Our simulations allow us to deduce how dust grains of varying sizes become distributed throughout the circumstellar medium. We show that smaller dust grains (radius <0.045 μm) tend to be strongly bound to the gas and therefore follow the gas density distribution closely, with intricate fine structure due to essentially hydrodynamical instabilities at the wind-related contact discontinuity. Larger grains which are more resistant to drag forces are shown to have their own unique dust distribution, with progressive deviations from the gas morphology. Specifically, small dust grains stay entirely within the zone bound by shocked wind material. The large grains are capable of leaving the shocked wind layer and can penetrate into the shocked or even unshocked interstellar medium. Depending on how the number of dust grains varies with grain size, this should leave a clear imprint in infrared observations of bow shocks of red supergiants and other evolved stars.


The Astrophysical Journal | 2011

FORMATION OF SOLAR FILAMENTS BY STEADY AND NONSTEADY CHROMOSPHERIC HEATING

Chun Xia; P. F. Chen; Rony Keppens; A. J. van Marle

It has been established that cold plasma condensations can form in a magnetic loop subject to localized heating of its footpoints. In this paper, we use grid-adaptive numerical simulations of the radiative hydrodynamic equations to investigate the filament formation process in a pre-shaped loop with both steady and finite-time chromospheric heating. Compared to previous works, we consider low-lying loops with shallow dips and use a more realistic description for radiative losses. We demonstrate for the first time that the onset of thermal instability satisfies the linear instability criterion. The onset time of the condensation is roughly ~2 hr or more after the localized heating at the footpoint is effective, and the growth rate of the thread length varies from 800 km hr?1 to 4000 km hr?1, depending on the amplitude and the decay length scale characterizing this localized chromospheric heating. We show how single or multiple condensation segments may form in the coronal portion. In the asymmetric heating case, when two segments form, they approach and coalesce, and the coalesced condensation later drains down into the chromosphere. With steady heating, this process repeats with a periodicity of several hours. While our parametric survey confirms and augments earlier findings, we also point out that steady heating is not necessary to sustain the condensation. Once the condensation is formed, it keeps growing even after the localized heating ceases. In such a finite-heating case, the condensation instability is maintained by chromospheric plasma that gets continuously siphoned into the filament thread due to the reduced gas pressure in the corona. Finally, we show that the condensation can survive the continuous buffeting of perturbations from photospheric p-mode waves.


Astronomy and Astrophysics | 2009

The hydrodynamics of the supernova remnant Cassiopeia A: The influence of the progenitor evolution on the velocity structure and clumping

B. van Veelen; N. Langer; J. Vink; Guillermo Garcia-Segura; A. J. van Marle

Aims. There are large differences in the proposed progenitor models for the Cas A Supernova remnant (SNR). One of these differences is the presence or absence of a Wolf-Rayet (WR) phase of the progenitor star. The mass loss history of the progenitor star strongly affects the shape of the SNR. In this paper we investigate whether the progenitor star of Cas A had a WR phase or not and how long it may have lasted. Methods. We performed two-dimensional multi-species hydrodynamical simulations of the CSM around the progenitor star for several WR life times, each followed by the interaction of the supernova ejecta with the CSM. We then looked at the influence of the length of the WR phase and compared the results of the simulations with the observations of Cas A. Results. The difference in the structure of the CSM, for models with different WR life times, has a strong impact on the resulting SNR. With an increasing WR life time the reverse shock velocity of the SNR decreases and the range of observed velocities in the in increases shocked material. Furthermore, if a WR phase occurs, the remainders of the WR shell will be visible in the resulting SNR. Conclusions. Comparing our results with the observations suggests that the progenitor star of Cas A did not have a WR phase. We also find that the quasi-stationary flocculi (QSF) in Cas A are not consistent with the clumps from a WR shell that have been shocked and accelerated by the interaction with the SN ejecta. We can also conclude that for an SN explosion taking place in a CSM that is shaped by the wind during a short (≤15 000 yr) WR phase, the clumps from the WR shell will be visible inside the SNR.


Astronomy and Astrophysics | 2011

Thin shell morphology in the circumstellar medium of massive binaries

A. J. van Marle; Rony Keppens; Zakaria Meliani

Context. In massive binaries, the powerful stellar winds of the two stars collide, leading to the formation of shock-dominated environments that can be modeled only in 3D. Aims. We investigate the morphology of the collision-front shell between the stellar winds of binary components in two long-period binary systems, one consisting of a hydrogen-rich Wolf-Rayet star (WNL) and an O-star and the other of a luminous blue variable (LBV) and an O-star. We follow the development and evolution of instabilities due to both the wind interaction and the orbital motion, that form in this shell if it is sufficiently compressed. Methods. We use MPI-AMRVAC to time-integrate the equations of hydrodynamics, combined with optically thin radiative cooling, on an adaptive mesh 3D grid. Using parameters for generic binary systems, we simulate the interaction between the winds of the two stars. Results. The WNL + O star binary represent a typical example of an adiabatic wind collision. The resulting shell is thick and smooth, showing no instabilities. On the other hand, the shell created by the collision of the O star wind with the LBV wind, as well as the orbital motion of the binary components, is susceptible to thin shell instabilities, which create a highly structured morphology. We identify the instabilities as both linear and non-linear thin-shell instabilities, there being distinct differences between the leading and the trailing parts of the collision front. We also find that for binaries containing a star with a (relatively) slow wind, the global shape of the shell is determined more by the slow wind velocity and the orbital motion of the binary, than the ram pressure balance between the two winds. Conclusions. Additional parametric studies of the interaction between the massive binary winds are needed to identify the role and dynamical importance of multiple instabilities at the collision front, as shown here for an LBV + O star system.


Astronomy and Astrophysics | 2012

Multi-dimensional models of circumstellar shells around evolved massive stars

A. J. van Marle; Rony Keppens

Massive stars shape their surrounding medium through the force of their stellar winds, which collide with the circumstellar medium. Because the characteristics of these stellar winds vary over the course of the evolution of the star, the circumstellar matter becomes a reflection of the stellar evolution and can be used to determine the characteristics of the progenitor star. In particular, whenever a fast wind phase follows a slow wind phase, the fast wind sweeps up its predecessor in a shell, which is observed as a circumstellar nebula. We make 2-D and 3-D numerical simulations of fast stellar winds sweeping up their slow predecessors to investigate whether numerical models of these shells have to be 3-D, or whether 2-D models are sufficient to reproduce the shells correctly. We focus on those situations where a fast Wolf-Rayet (WR) star wind sweeps up the slower wind emitted by its predecessor, being either a red supergiant or a luminous blue variable. As the fast WR wind expands, it creates a dense shell of swept up material that expands outward, driven by the high pressure of the shocked WR wind. These shells are subject to a fair variety of hydrodynamic-radiative instabilities. If the WR wind is expanding into the wind of a luminous blue variable phase, the instabilities will tend to form a fairly small-scale, regular filamentary lattice with thin filaments connecting knotty features. If the WR wind is sweeping up a red supergiant wind, the instabilities will form larger interconnected structures with less regularity. Our results show that 3-D models, when translated to observed morphologies, give realistic results that can be compared directly to observations. The 3-D structure of the nebula will help to distinguish different progenitor scenarios.


Astronomy and Astrophysics | 2014

Can the magnetic field in the Orion arm inhibit the growth of instabilities in the bow shock of Betelgeuse

A. J. van Marle; Leen Decin; Z. Meliani

Many evolved stars travel through space at supersonic velocities, which leads to the formation of bow shocks ahead of the star where the stellar wind collides with the interstellar medium (ISM). Herschel observations of the bow shock of


Astronomy and Astrophysics | 2015

Shape and evolution of wind-blown bubbles of massive stars: on the effect of the interstellar magnetic field

A. J. van Marle; Z. Meliani; A. Marcowith

\alpha


Astronomy and Astrophysics | 2012

A hydrodynamical model of the circumstellar bubble created by two massive stars

A. J. van Marle; Z. Meliani; A. Marcowith

-Orionis show that the shock is almost free of instabilities, despite being, at least in theory, subject to both Kelvin-Helmholtz and Rayleigh-Taylor instabilities. A possible explanation for the lack of instabilities lies in the presence of an interstellar magnetic field. We wish to investigate whether the magnetic field of the interstellar medium (ISM) in the Orion arm can inhibit the growth of instabilities in the bow shock of

Collaboration


Dive into the A. J. van Marle's collaboration.

Top Co-Authors

Avatar

Leen Decin

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

N. L. J. Cox

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Rony Keppens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zakaria Meliani

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

B. Vandenbussche

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

P. Royer

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

C. Waelkens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alain Jorissen

Université libre de Bruxelles

View shared research outputs
Researchain Logo
Decentralizing Knowledge