Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. J. Walsh is active.

Publication


Featured researches published by A. J. Walsh.


Monthly Notices of the Royal Astronomical Society | 2010

The 6-GHz methanol multibeam maser catalogue - I. Galactic Centre region, longitudes 345° to 6°

J. L. Caswell; G. A. Fuller; J. A. Green; A. Avison; S. L. Breen; Kate J. Brooks; Michael G. Burton; A. Chrysostomou; James Cox; Philip J. Diamond; S. P. Ellingsen; M. D. Gray; M. G. Hoare; M. R. W. Masheder; N. M. McClure-Griffiths; M. Pestalozzi; C. Phillips; Lyshia Quinn; M. A. Thompson; M. A. Voronkov; A. J. Walsh; Derek Ward-Thompson; D. Wong-McSweeney; J. A. Yates; R. J. Cohen

Original article can be found at: http://www3.interscience.wiley.com/journal/ Copyright Royal Astronomical Society


Monthly Notices of the Royal Astronomical Society | 2013

Variations in the Galactic star formation rate and density thresholds for star formation

S. N. Longmore; John Bally; L. Testi; C. R. Purcell; A. J. Walsh; E. Bressert; M. Pestalozzi; S. Molinari; Jürgen Ott; Luca Cortese; Cara Battersby; Norman Murray; Eve J. Lee; J. M. D. Kruijssen; E. Schisano; D. Elia

The conversion of gas into stars is a fundamental process in astrophysics and cosmology. Stars are known to form from the gravitational collapse of dense clumps in interstellar molecular clouds, and it has been proposed that the resulting star formation rate is proportional to either the amount of mass above a threshold gas surface density, or the gas volume density. These star formation prescriptions appear to hold in nearby molecular clouds in our Milky Way Galaxys disc as well as in distant galaxies where the star formation rates are often much larger. The inner 500 pc of our Galaxy, the Central Molecular Zone (CMZ), contains the largest concentration of dense, high-surface density molecular gas in the Milky Way, providing an environment where the validity of star formation prescriptions can be tested. Here, we show that by several measures, the current star formation rate in the CMZ is an order-of-magnitude lower than the rates predicted by the currently accepted prescriptions. In particular, the region 1 degrees several 10(3) cm(-3)) molecular gas - enough to form 1000 Orion-like clusters - but the present-day star formation rate within this gas is only equivalent to that in Orion. In addition to density, another property of molecular clouds must be included in the star formation prescription to predict the star formation rate in a given mass of molecular gas. We discuss which physical mechanisms might be responsible for suppressing star formation in the CMZ.


Monthly Notices of the Royal Astronomical Society | 2005

Millimetre continuum observations of southern massive star formation regions. I. SIMBA observations of cold cores

T. Hill; Michael G. Burton; V. Minier; M. A. Thompson; A. J. Walsh; M. R. Hunt-Cunningham; Guido Garay

We report the results of a 1.2-mm continuum emission survey toward 131 star-forming complexes suspected of undergoing massive star formation. These regions have previously been identified as harbouring a methanol maser and/or a radio continuum source [ultracompact (UC) H II region], the presence of which is in most instances indicative of massive star formation. The 1.2-mm emission was mapped using the SIMBA instrument on the 15-m Swedish ESO Submillimetre Telescope (SEST). Emission is detected toward all of the methanol maser and UC H II regions targeted, as well as towards 20 others lying within the fields mapped, implying that these objects are associated with cold, deeply embedded objects. Interestingly, there are also 20 methanol maser sites and nine UC H II regions within the fields mapped which are devoid of millimetre continuum emission. In addition to the maser and UC H II regions detected, we have also identified 253 other sources within the SIMBA maps. All of these (253) are new sources, detected solely from their millimetre continuum emission. These ‘mm-only’ cores are devoid of the traditional indicators of massive star formation, (i.e. methanol/OH maser, UC H II regions or IRAS point sources). At least 45 per cent of these mm-only cores are also without mid-infrared Mid-course Space Experiment (MSX) emission. The ‘mm-only’ core may be an entirely new class of source that represents an earlier stage in the evolution of massive stars, prior to the onset of methanol maser emission. Or, they may harbour protoclusters which do not contain any high-mass stars (i.e. below the H II region limit). In total, 404 sources are detected, representing four classes of sources which are distinguished by the presence of the different combination of associated tracer/s. Their masses, estimated assuming a dust temperature of 20 K and adopting kinematic distances, range from 0.5 × 10 1 to 3.7 × 10 4 M� , with an average mass for the sample of 1.5 × 10 3 M� . The H2 number density (nH2 )o fthe source sample ranges from 1.4 × 10 3 to 1.9 × 10 6 cm −3 , with an average of 8.7 × 10 4 cm −3 . The average radius of the sample is 0.5 pc. The visual extinction ranges from 10 to 500 mag with an average of 80 mag, which implies a high degree of embedding. The surface density (� )v aries from 0.2 to 18.0 kg m −2 with an average of 2.8 kg m −2 . Analysis of the millimetre-only sources shows that they are less massive ( ¯


Monthly Notices of the Royal Astronomical Society | 2009

The 6-GHz multibeam maser survey – I. Techniques

J. A. Green; J. L. Caswell; G. A. Fuller; A. Avison; S. L. Breen; Kate J. Brooks; Michael G. Burton; A. Chrysostomou; James Cox; Philip J. Diamond; S. P. Ellingsen; M. D. Gray; M. G. Hoare; M. R. W. Masheder; N. M. McClure-Griffiths; M. Pestalozzi; C. Phillips; Lyshia Quinn; M. A. Thompson; M. A. Voronkov; A. J. Walsh; Derek Ward-Thompson; D. Wong-McSweeney; J. A. Yates; R. J. Cohen

A new 7-beam 6 7 GHz receiver has been built to survey the Galaxy and the Magellanic Clouds for newly forming high-mass stars that are pinpointed by strong methanol maser emission at 6668 MHz. The receiver was jointly constructed by Jodrell Bank Observatory (JBO) and the Australia Telescope National Facility (ATNF) and allows simultaneous coverage at 6668 and 6035 MHz. It was successfully commissioned at Parkes in January 2006 and is now being used to conduct the Parkes-Jodrell multibeam maser survey of the Milky Way. This will be the first systematic survey of the entire Galactic plane for masers of not only 6668-MHz methanol, but also 6035-MHz excited-state hydroxyl. The survey is two orders of magnitude faster than most previous systematic surveys and has an rms noise level of �0.17Jy. This paper describes the observational strategy, techniques and reduction procedures of the Galactic and Magellanic Cloud surveys, together with deeper, pointed, follow-up observations and complementary observations with other instruments. It also includes an estimate of the survey detection efficiency. The 111 days of observationswith the Parkes telescope have so far yielded >800 methanol sources, of which �350 are new discoveries. The whole project will provide the first comprehensive Galaxy-wide catalogue of 6668-MHz and 6035-MHz masers.


Monthly Notices of the Royal Astronomical Society | 2012

Spectral imaging of the Central Molecular Zone in multiple 3-mm molecular lines

Paul A. Jones; Michael G. Burton; Maria Cunningham; M. A. Requena-Torres; K. M. Menten; P. Schilke; A. Belloche; S. Leurini; J. Martin-Pintado; Jürgen Ott; A. J. Walsh

We have mapped 20 spectral lines in the Central Molecular Zone (CMZ) around the Galactic Centre, emitting from 85.3 to 93.3 GHz. This work used the 22-m Mopra radio telescope in Australia, equipped with the 8-GHz bandwidth University of New South Wales-Mopra Spectrometer (UNSW-MOPS) digital filter bank, obtaining ∼2 km s−1 spectral and ∼40 arcsec spatial resolution. The lines measured include emission from the c-C3H2, CH3CCH, HOCO+, SO, H13CN, H13CO+, SO, H13NC, C2H, HNCO, HCN, HCO+, HNC, HC3N, 13CS and N2H+ molecules. The area covered is Galactic longitude −0bsl000647 to 1bsl000648 and latitude −0bsl000643 to 0bsl000642, including the bright dust cores around Sgr A, Sgr B2, Sgr C and G1.6−0.025. We present images from this study and conduct a principal component analysis on the integrated emission from the brightest eight lines. This is dominated by the first component, showing that the large-scale distribution of all molecules is very similar. We examine the line ratios and optical depths in selected apertures around the bright dust cores, as well as for the complete mapped region of the CMZ. We highlight the behaviour of the bright HCN, HNC and HCO+ line emission, together with that from the 13C isotopologues of these species, and compare the behaviour with that found in extragalactic sources where the emission is unresolved spatially. We also find that the isotopologue line ratios (e.g. HCO+/H13CO+) rise significantly with increasing redshifted velocity in some locations. Line luminosities are also calculated and compared to that of CO, as well as to line luminosities determined for external galaxies.


Astronomy and Astrophysics | 2005

Star-forming Protoclusters Associated with Methanol Masers

V. Minier; Michael G. Burton; T. Hill; M. Pestalozzi; C. R. Purcell; Guido Garay; A. J. Walsh; S. N. Longmore

We present a multiwavelength study of five methanol maser sites which are not directly associated with a strong (>100 mJy) radio continuum source: G 31.28+0.06, G 59.78+0.06, G 173.49+2.42 (S231, S233IR), G 188.95+0.89 (S252, AFGL5180) and G 192.60-0.05 (S255IR). These radio-quiet methanol maser sites are often interpreted as precursors of ultra- compact H  regions or massive protostar sites. In this work, the environment of methanol masers is probed from mid-IR to millimetre wavelengths at angular resolutions of 8 �� −34 �� . Spectral energy distribution (SED) diagrams for each site are pre- sented, together with mass and luminosity estimates. Each radio-quiet maser site is always associated with a massive (>50 M� ), deeply embedded (Av > 40 mag) and very luminous (>10 4 L� ) molecular clump, with Ltotal ∝ M 0.75 gas . These physical properties characterise massive star-forming clumps in earlier evolutionary phases than H  regions. In addition, colder gas clumps seen only at mm-wavelengths are also found near the methanol maser sites. These colder clumps may represent an even earlier phase of massive star formation. These results suggest an evolutionary sequence for massive star formation from a cold clump, seen only at mm wavelengths, evolving to a hot molecular core with a two-component SED with peaks at far-IR and mid-IR wave- lengths, to an (ultra-compact) H  region. Alternatively, the cold clumps might be clusters of low-mass YSOs, in formation near the massive star-forming clusters. Finally, the values of the dust grain emissivity index (β) range between 1.6 and 1.9.


Astronomy and Astrophysics | 2003

Observations of warm dust near methanol masers

A. J. Walsh; G. H. Macdonald; N. D. S. Alvey; Michael G. Burton; J.-K. Lee

Continuum emission at 450 and 850 mu m from warm dust has been mapped in the fields of 71 methanol masers. Within these fields lie 30 centimetre-wave radio continuum sources and an additional 13 methanol maser sites. Sub-mm emission is detected at all but one of the maser sites, confirming the association of methanol maser emission with deeply embedded objects. Measured bolometric luminosities confirm that methanol maser emission is an excellent signpost of high-mass star formation. Examples of nearby isolated maserless dust cores may be harbouring massive protostars at an earlier evolutionary stage.


The Astrophysical Journal | 2004

Star formation on the move

A. J. Walsh; Philip C. Myers; Michael G. Burton

Recent models of star formation suggest that the mass of a star is largely determined by its history of motion through its natal molecular cloud. Such motions may be observable in the early stages of star formation. We have looked for the relative shifts of line-center velocity in low [13CO (1-0) and C18O (1-0)] and high [N2H+ (1-0)] density tracers toward a sample of 42 low-mass star-forming cores. Our results indicate that any motions of the high-density cores with respect to their low-density envelopes are very small (<~0.1 km s-1) compared to the motions expected from models of ballistic movement. We therefore conclude that isolated cores do not generally move ballistically with respect to their surrounding envelopes.


Astronomy and Astrophysics | 2006

A SCUBA imaging survey of ultracompact HII regions; the environments of massive star formation

M. A. Thompson; J. Hatchell; A. J. Walsh; G. H. Macdonald; T. J. Millar

We present a SCUBA submillimetre (450 and 850 μm) survey of the environment of 105 IRAS point sources, selected from the Wood & Churchwell (1989a) and Kurtz et al. (1994) radio ultracompact (UC) Hii region surveys. We detected a total of 155 sub-mm clumps associated with the IRAS point sources and identified three distinct types of object: ultracompact cm-wave sources that are not associated with any sub-mm emission (sub-mm quiet objects), sub-mm clumps that are associated with ultracompact cm-wave sources (radio-loud clumps); and sub-mm clumps that are not associated with any known ultracompact cm-wave sources (radio-quiet clumps). 90% of the sample of IRAS point sources were found to be associated with strong sub-mm emission. We consider the sub-mm colours, morphologies and distance-scaled fluxes of the sample of sub-mm clumps and show that the sub-mm quiet objects are unlikely to represent embedded UC Hii regions unless they are located at large heliocentric distances. Many of the 2.5 arcmin SCUBA fields contain more than one sub-mm clump, with an average number of companions (the companion clump fraction) of 0.90. The clumps are more strongly clustered than other candidate HMPOs and the mean clump surface density exhibits a broken power-law distribution with a break at 3 pc. We demonstrate that the sub-mm and cm-wave fluxes of the majority of radio-loud clumps are in excellent agreement with the standard model of ultracompact Hii regions. We speculate on the nature of the radio-quiet sub-mm clumps and, whilst we do not yet have sufficient data to conclude that they are in a pre-UC Hii region phase, we argue that their characteristics are suggestive of such a stage.


Astronomy and Astrophysics | 2010

The earliest phases of high-mass star formation: the NGC 6334-NGC 6357 complex

D. Russeil; A. Zavagno; F. Motte; N. Schneider; Sylvain Bontemps; A. J. Walsh

Context. Our knowledge of high-mass star formation has been mainly based on follow-up studies of bright sources found by IRAS, and has thus been incomplete for its earliest phases, which are inconspicuous at infrared wavelengths. With a new generation of powerful bolometer arrays, unbiased large-scale surveys of nearby high-mass star-forming complexes now search for the high-mass analog of low-mass cores and class 0 protostars. Aims: Following the pioneering study of Cygnus X, we investigate the star-forming region NGC 6334-NGC 6357 (~1.7 kpc). Methods: We study the complex NGC 6334-NGC 6357 in an homogeneous way following the previous work of Motte and collaborators. We used the same method to extract the densest cores which are the most likely sites for high-mass star formation. We analyzed the SIMBA/SEST 1.2 mm data presented in Munoz and coworkers, which covers all high-column density areas (A v ≥ 15 mag) of the NGC 6334-NGC 6357 complex and extracted dense cores following the method used for Cygnus X. We constrain the properties of the most massive dense cores (M > 100 M_ȯ) using new molecular line observations (as SiO, N2H+,H13CO+, HCO+ (1-0) and CH3CN) with Mopra and a complete cross-correlation with infrared databases (MSX, GLIMPSE, MIPSGAL) and literature. Results: We extracted 163 massive dense cores of which 16 are more massive than 200 M_ȯ. These high-mass dense cores have a typical FWHM size of 0.37 pc, an average mass of M ~ 600 M_ȯ, and a volume-averaged density of ~ 1.5 × 105 cm-3. Among these massive dense cores, 6 are good candidates for hosting high-mass infrared-quiet protostars, 9 cores are classified as high-luminosity infrared protostars, and we find only one high-mass starless clump (~0.3 pc, ~ 4 × 104 cm-3) that is gravitationally bound. Conclusions: Since our sample is derived from a single molecular complex and covers every embedded phase of high-mass star formation, it provides a statistical estimate of the lifetime of massive stars. In contrast to what is found for low-mass class 0 and class I phases, the infrared-quiet protostellar phase of high-mass stars may last as long as their more well known high-luminosity infrared phase. As in Cygnus X, the statistical lifetime of high-mass protostars is shorter than found for nearby, low-mass star-forming regions which implies that high-mass pre-stellar and protostellar cores are in a dynamic state, as expected in a molecular cloud where turbulent and/or dynamical processes dominate. Based on observations made with Mopra telescope. The Mopra telescope is part of the Australia Telescope which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO.Table 1 and Appendix are only available in electronic form at http://www.aanda.orgProfiles as FITS files are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/515/A55

Collaboration


Dive into the A. J. Walsh's collaboration.

Top Co-Authors

Avatar

Michael G. Burton

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

S. N. Longmore

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. A. Thompson

University of Hertfordshire

View shared research outputs
Top Co-Authors

Avatar

Kate J. Brooks

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

M. A. Voronkov

Australia Telescope National Facility

View shared research outputs
Top Co-Authors

Avatar

Maria Cunningham

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

J. A. Green

Australia Telescope National Facility

View shared research outputs
Researchain Logo
Decentralizing Knowledge