A. James Mixson
University of Maryland, Baltimore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. James Mixson.
Nucleic Acids Research | 2005
Qixin Leng; A. James Mixson
Successful gene therapy depends on the development of efficient, non-toxic gene delivery systems. To accomplish this objective, our laboratory has focused on solid-phase synthesized peptide carriers, in which the amino acid sequence can be varied precisely to augment intracellular DNA transport. We previously determined that linear and branched co-polymers of histidine and lysine in combination with liposomes enhanced the efficiency of gene transfection. In this study, we have modified two branched histidine-lysine (HK) peptides by adding a histidine-rich tail. In a variety of cell lines, this histidine-rich tail markedly improved transfection efficiency, presumably by increasing the buffering capacity of the polymer. One polymer with a histidine-rich tail, H2K4bT, compared favorably with the commonly used transfection agents. Together with modification of our transfection protocol, these improved HK peptides alone, without liposomes, are the effective carriers of plasmids into a variety of cells. We anticipate that branched HK peptides will continue to be developed as carriers of nucleic acids for in vitro and in vivo applications.
Journal of Gene Medicine | 2005
Lei Zhang; Qixin Leng; A. James Mixson
Although hundreds of different signal peptides have now been identified, few studies have examined the factors enabling signal peptides to augment secretion of mature proteins. Signal peptides, located at the N‐terminus of nascent secreted proteins, characteristically have three domains: (1) a basic domain at the N‐terminus, (2) a central hydrophobic core, and (3) a carboxy‐terminal cleavage region. In this study, we investigated whether alterations in the basic and/or the hydrophobic domains of a commonly used signal peptide from interleukin‐2 (IL‐2) affected secretion of two proteins: placental alkaline phosphatase (AP) and endostatin.
Antimicrobial Agents and Chemotherapy | 2006
Jingsong Zhu; Paul W. Luther; Qixin Leng; A. James Mixson
ABSTRACT A family of histidine-rich peptides, histatins, is secreted by the parotid gland in mammals and exhibits marked inhibitory activity against a number of Candida species. We were particularly interested in the mechanism by which histidine-rich peptides inhibit fungal growth, because our laboratory has synthesized a variety of such peptides for drug and nucleic acid delivery. In contrast to naturally occurring peptides that are linear, peptides made on synthesizers can be varied with respect to their degrees of branching. Using this technology, we explored whether histidine-lysine (HK) polymers of different complexities and degrees of branching affect the growth of several species of Candida. Polymers with higher degrees of branching were progressively more effective against Candida albicans, with the four-branched polymer, H2K4b, most effective. Furthermore, H2K4b accumulated efficiently in C. albicans, which may indicate its ability to transport other antifungal agents intracellularly. Although H2K4b had greater antifungal activity than histatin 5, their mechanisms were similar. Toxicity in C. albicans induced by histatin 5 or branched HK peptides was markedly reduced by 4,4′-diisothiocyanato-stilbene-2,2′-disulfonate, an inhibitor of anion channels. We also determined that bafilomycin A1, an inhibitor of endosomal acidification, significantly decreased the antifungal activity of H2K4b. This suggests that the pH-buffering and subsequent endosomal-disrupting properties of histidine-rich peptides have a role in their antifungal activity. Moreover, the ability of the histidine component of these peptides to disrupt endosomes, which allows their escape from the lysosomal pathway, may explain why these peptides are both effective antifungal agents and nucleic acid delivery carriers.
Biomaterials | 2014
Szu-Ting Chou; Kellie Hom; Daoning Zhang; Qixin Leng; Lucas J. Tricoli; Jason M. Hustedt; Amy Lee; Michael Shapiro; Joonil Seog; Jason D. Kahn; A. James Mixson
Branched peptides containing histidines and lysines (HK) have been shown to be effective carriers for DNA and siRNA. We anticipate that elucidation of the binding mechanism of HK with siRNA will provide greater insight into the self-assembly and delivery of the HK:siRNA polyplex. Non-covalent bonds between histidine residues and nucleic acids may enhance the stability of siRNA polyplexes. We first compared the polyplex biophysical properties of a branched HK with those of branched asparagine-lysine peptide (NK). Consistent with siRNA silencing experiments, gel electrophoresis demonstrated that the HK siRNA polyplex maintained its integrity with prolonged incubation in serum, whereas siRNA in complex with NK was degraded in a time-dependent manner. Isothermal titration calorimetry of various peptides binding to siRNA at pH 7.3 showed that branched polylysine, interacted with siRNA was initially endothermic, whereas branched HK exhibited an exothermic reaction at initial binding. The exothermic interaction indicates formation of non-ionic bonds between histidines and siRNA; purely electrostatic interaction is entropy-driven and endothermic. To investigate the type of non-ionic bond, we studied the protonation state of imidazole rings of a selectively (15)N labeled branched HK by heteronuclear single quantum coherence NMR. The peak of Nδ1-H tautomers of imidazole shifted downfield (in the direction of deprotonation) by 0.5-1.0 ppm with addition of siRNA, providing direct evidence that histidines formed hydrogen bonds with siRNA at physiological pH. These results establish that histidine-rich peptides form hydrogen bonds with siRNA, thereby enhancing the stability and biological activity of the polyplex in vitro and in vivo.
Biomacromolecules | 2013
Szu-Ting Chou; Qixin Leng; Puthupparampil V. Scaria; Jason D. Kahn; Lucas J. Tricoli; Martin C. Woodle; A. James Mixson
We characterized in this study the pharmacokinetics and antitumor efficacy of histidine-lysine (HK):siRNA nanoplexes modified with PEG and a cyclic RGD (cRGD) ligand targeting αvβ3 and αvβ5 integrins. With noninvasive imaging, systemically administered surface-modified HK:siRNA nanoplexes showed nearly 4-fold greater blood levels, 40% higher accumulation in tumor tissue, and 60% lower luciferase activity than unmodified HK:siRNA nanoplexes. We then determined whether the surface-modified HK:siRNA nanoplex carrier was more effective in reducing MDA-MB-435 tumor growth with an siRNA targeting Raf-1. Repeated systemic administration of the selected surface modified HK:siRNA nanoplexes targeting Raf-1 showed 35% greater inhibition of tumor growth than unmodified HK:siRNA nanoplexes and 60% greater inhibition of tumor growth than untreated mice. The improved blood pharmacokinetic results and tumor localization observed with the integrin-targeting surface modification of HK:siRNA nanoplexes correlated with greater tumor growth inhibition. This investigation reveals that through control of targeting ligand surface display in association with a steric PEG layer, modified HK: siRNA nanoplexes show promise to advance RNAi therapeutics in oncology and potentially other critical diseases.
Journal of Gene Medicine | 2006
Qixin Leng; Puthupparampil V. Scaria; Olga B. Ioffe; Martin C. Woodle; A. James Mixson
In this study we investigated whether a particular branched HK polymer, H2K4b, was an effective in vivo carrier of plasmids expressing the antiangiogenic kringle 1–5 or the tumor suppressor p53.
Journal of Gene Medicine | 2014
Qixin Leng; Szu-Ting Chou; Puthupparampil V. Scaria; Martin C. Woodle; A. James Mixson
Selecting nonviral carriers for in vivo gene delivery is often dependent on determining the optimal carriers from transfection assays in vitro. The rationale behind this in vitro strategy is to cast a net sufficiently wide to identify the few effective carriers of plasmids for in vivo studies. Nevertheless, many effective in vivo carriers may be overlooked by this strategy because of the marked differences between in vitro and in vivo assays.
Journal of Gene Medicine | 2016
Qixin Leng; A. James Mixson
Promising plasmid‐based treatments have limited value without an effective delivery system. Recently, the linear H2K with a repeating ‐KHHK‐ pattern was determined to be an effective plasmid carrier to tumor xenografts in vivo. Although unpacking of the H2K polyplex within the tumor may have a role, the mechanism for the enhanced efficacy remains unclear.
Journal of Drug Targeting | 2014
Puthupparampil V. Scaria; Yijia Liu; Qixin Leng; Szu-Ting Chou; A. James Mixson; Martin C. Woodle
Abstract The treatment of invasive candidiasis associated with growing numbers of immunocompromised patients remains a major challenge complicated by increasing drug resistance. A novel class of branched histidine-lysine (bHK) peptides has promising antifungal activity, and exhibits a mechanism similar to natural histatins, and thus may avoid drug resistance. The present studies evaluate ligand targeting of bHK peptides to fungal surface integrins by determining whether a cyclic RGD (cRGD) peptide with a large PEG linker could enhance bHK peptide antifungal activity. Whereas conjugates containing only the PEG linker reduced bHK peptide activity, conjugates with the cRGD-PEG ligand resulted in marked enhancement of activity against Candida albicans. This study provides the first demonstration of benefit from ligand targeting of antifungal agents to fungal surface receptors.
Journal of drug delivery | 2017
Qixin Leng; Martin C. Woodle; A. James Mixson
Over the past 20 years, a diverse group of ligands targeting surface biomarkers or receptors has been identified with several investigated to target siRNA to tumors. Many approaches to developing tumor-homing peptides, RNA and DNA aptamers, and single-chain variable fragment antibodies by using phage display, in vitro evolution, and recombinant antibody methods could not have been imagined by researchers in the 1980s. Despite these many scientific advances, there is no reason to expect that the ligand field will not continue to evolve. From development of ligands based on novel or existing biomarkers to linking ligands to drugs and gene and antisense delivery systems, several fields have coalesced to facilitate ligand-directed siRNA therapeutics. In this review, we discuss the major categories of ligand-targeted siRNA therapeutics for tumors, as well as the different strategies to identify new ligands.