A. Jolene Mork
Massachusetts Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Jolene Mork.
Nano Letters | 2014
Gleb M. Akselrod; Ferry Prins; Lisa V. Poulikakos; Elizabeth M. Y. Lee; Mark C. Weidman; A. Jolene Mork; Adam P. Willard; Vladimir Bulovic; William A. Tisdale
Colloidal quantum dots (QDs) are promising materials for use in solar cells, light-emitting diodes, lasers, and photodetectors, but the mechanism and length of exciton transport in QD materials is not well understood. We use time-resolved optical microscopy to spatially visualize exciton transport in CdSe/ZnCdS core/shell QD assemblies. We find that the exciton diffusion length, which exceeds 30 nm in some cases, can be tuned by adjusting the inorganic shell thickness and organic ligand length, offering a powerful strategy for controlling exciton movement. Moreover, we show experimentally and through kinetic Monte Carlo simulations that exciton diffusion in QD solids does not occur by a random-walk process; instead, energetic disorder within the inhomogeneously broadened ensemble causes the exciton diffusivity to decrease over time. These findings reveal new insights into exciton dynamics in disordered systems and demonstrate the flexibility of QD materials for photonic and optoelectronic applications.
Angewandte Chemie | 2012
Youhei Takeda; Trisha L. Andrew; Jose M. Lobez; A. Jolene Mork; Timothy M. Swager
A thin-film transistor: An n-type polymer semiconductor, poly(2,3-bis(perfluorohexyl)thieno[3,4-b]pyrazine), was synthesized through a Pd-catalyzed polycondensation employing a perfluorinated multiphase solvent system. This is the first example of an n-type polymer semiconductor with exclusive solubility in fluorinated solvents. The fabrication of organic field effect transistors containing this new n-type polymer semiconductor is shown.
Journal of Physical Chemistry Letters | 2016
A. Jolene Mork; Elizabeth M. Y. Lee; Nabeel S. Dahod; Adam P. Willard; William A. Tisdale
Recent experimental and theoretical results have highlighted the surprisingly dominant role of acoustic phonons in regulating dynamic processes in nanocrystals. While it has been known for many years that acoustic phonon frequencies in nanocrystals depend on their size, strategies for tuning acoustic phonon energy at a given fixed size were not available. Here, we show that acoustic phonon frequencies in colloidal quantum dots (QDs) can be tuned through the choice of the surface ligand. Using low-frequency Raman spectroscopy, we explore the dependence of the l = 0 acoustic phonon resonance in CdSe QDs on ligand size, molecular weight, and chemical functionality. On the basis of these aggregated observations, we conclude that the primary mechanism for this effect is mass loading of the QD surface and that interactions between ligands and with the surrounding environment play a comparatively minor yet non-negligible role.
Physical Chemistry Chemical Physics | 2016
A. Jolene Mork; Elizabeth M. Y. Lee; William A. Tisdale
We measure the temperature dependence of breathing-mode acoustic vibrations of semiconductor nanocrystals using low-frequency Raman spectroscopy. In CdSe core-only nanocrystals, the lowest-energy l = 0 mode red-shifts with increasing temperature by ∼5% between 77-300 K. Changes to the interatomic bond distances in the inorganic crystal lattice, with corresponding changes to the bulk modulus and density of the material, contribute to the observed energy shift but do not fully explain its magnitude across all nanocrystal sizes. Invariance of the Raman linewidth over the same temperature range suggests that the acoustic breathing mode is inhomogeneously broadened. The acoustic phonons of CdSe/CdS core-shell composite nanocrystals display similar qualitative behavior. However, for large core-shell nanocrystals, we observe a higher-order Raman peak at approximately twice the energy of the l = 0 mode, which we identify as a higher spherical harmonic-the n = 2, l = 0 eigenmode-rather than a two-phonon scattering event.
Journal of Chemical Physics | 2017
Elizabeth M. Y. Lee; A. Jolene Mork; Adam P. Willard; William A. Tisdale
The measured low frequency vibrational energies of some quantum dots (QDs) deviate from the predictions of traditional elastic continuum models. Recent experiments have revealed that these deviations can be tuned by changing the ligands that passivate the QD surface. This observation has led to speculation that these deviations are due to a mass-loading effect of the surface ligands. In this article, we address this speculation by formulating a continuum elastic theory that includes the dynamical loading by elastic surface ligands. We demonstrate that this model is capable of accurately reproducing the l = 0 phonon energy across a variety of different QD samples, including cores with different ligand identities and epitaxially grown CdSe/CdS core/shell heterostructures. We highlight that our model performs well even in the small QD regime, where traditional elastic continuum models are especially prone to failure. Furthermore, we show that our model combined with Raman measurements can be used to infer the elastic properties of surface bound ligands, such as sound velocities and elastic moduli, that are otherwise challenging to measure.
Journal of Physical Chemistry C | 2014
A. Jolene Mork; Mark C. Weidman; Ferry Prins; William A. Tisdale
Synfacts | 2012
Timothy M. Swager; A. Jolene Mork
Synfacts | 2012
Timothy M. Swager; A. Jolene Mork
Synfacts | 2012
Timothy M. Swager; A. Jolene Mork
Synfacts | 2012
Timothy M. Swager; A. Jolene Mork