A. Joshi
Indian Institute of Technology Roorkee
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Joshi.
Pure and Applied Geophysics | 2001
A. Joshi; Sarva Jit Singh; Kavita Giroti
Abstract — The technique of Midorikawa (1993) has been modified to obtain a resultant envelope function at the observation point by placing the rupture causing an earthquake in a layered earth model. The method and its dependency on various modelling parameters are studied in detail. The complete study shows that the generated resultant envelope follows important strong motion characteristics such as directivity and attenuation effects. The simulated resultant envelope is further used for generating synthetic accelerograms by multiplying filtered white noise with the envelope of accelerogram at a particular observation point. Filters through which white noise passes include the effects of geometrical spreading, anelastic attenuation and near-site attenuation at high frequencies.¶Uttarkashi earthquake is among few Indian earthquakes for which strong motion data are available at thirteen different stations. Using the technique presented in this work, envelope function as well as complete acceleration time history during Uttarkashi earthquake has been simulated at these observation points. Comparison of peak acceleration, duration and acceleration response spectra confirms the utility and efficacy of the approach.
Journal of Seismology | 2001
A. Joshi
Garhwal Himalaya has been rocked by two major earthquakes in the span of just eight years, viz. Uttarkashi earthquake of 20th Oct, 1991 and Chamoli earthquake of 28th March, 1999. Chamoli earthquake of March 28, 1999 was recorded at 11 different stations of a strong motion array installed in the epicentral region. The maximum peak ground acceleration (353 cm/s2) was recorded at an accelerograph located at Gopeshwar. The data from eleven stations has been used for comparison with the simulated acceleration envelopes due to a model of the rupture responsible for this earthquake. For simulation of acceleration envelope the method of Midorikawa (1993) has been modified for its applicability to Himalayan region. This method has earlier been used by Joshi and Patel (1997) and Joshi (1999) for the studyof Uttarkashi earthquake of 20th Oct, 1991. The same method has been used for study of Chamoli earthquake. Layered earth crust has been introduced in place of homogeneous one in this method. The model of rupture is placed at a depth of 12 km below the Munsiari thrust for modelling Chamoli earthquake. Peak ground acceleration was calculated from simulated acceleration envelope using layered as well as homogeneous earth crust. For the rupture placed in a layered crust model peak ground acceleration of order 312 cm/s2 was simulated at Gopeshwar which is quite close to actually recorded value. The comparison of peak ground acceleration values in terms of root mean square error at eleven stations suggests that the root mean square error is reduced by inclusion of a layered earth crust in place of homogeneous earth crust.
Journal of Earthquake and Tsunami | 2012
A. Joshi; Pushpa Kumari; M. L. Sharma; A. K. Ghosh; M. K. Agarwal; A. Ravikiran
This paper presents a simplified technique to simulate strong ground motion from a finite source of an earthquake. The simplified technique is based on modifications made in the semi empirical technique given by Midorikawa [1993] and later modified by Joshi and Midorikawa [2004]. Modifications in this technique have been made to consider the effect of radiation pattern and seismic moment of the target earthquake. The coastal region of Sumatra Island was struck by a great earthquake of magnitude 9.0 (Mw) on 26th December, 2004. This earthquake is known for its release of high amount of energy and the devastating Tsunami. This earthquake was recorded at several broadband stations including a nearest broadband station located in Indonesia. The source of this earthquake is modeled by a finite rectangular rupture plane. Various locations of nucleation point and different values of rupture velocity have been tested before finalizing the rupture responsible for this earthquake. Iterative modeling and comparison of simulated and observed record due to final model suggests that the rupture initiated at the western end of the rupture plane at a depth of 38 km and started propagating in all direction with a rupture velocity of 3.0 km/s. The final model has been used to simulate record at MDRS and VISK stations located at the coastal region of India and simulated records are compared with observed records at these stations. The comparisons confirm the suitability of final model for predicting strong ground motion and the efficacy of the approach in modeling great earthquake. Strong ground motion has been simulated for the Sumatra earthquake of 26th December, 2004 at various hypothetical stations surrounding the final model of rupture plane. The distribution of peak ground acceleration in the near source region has been computed from simulated record at these stations. The isoacceleration contours shows that high peak acceleration zones of the order of > 2 g are observed in the source zone of this earthquake which gradually decreases with distance. Using the parameters of final model of the Sumatra earthquake a great hypothetical earthquake at northern segment of Andaman ridge has been modeled and records have been simulated at Port Blair (POR) station located in the Andaman Island, India. The simulated records shows that peak ground acceleration of the order of 1.4 g can be observed at POR station due to a hypothetical earthquake in the Andaman Island suggesting high seismic hazard in this region.
Journal of Seismology | 2003
A. Joshi
State of Uttaranchal in the northern part of India in the Garhwal Himalaya was hit by the Chamoli earthquake on 28th March, 1999 (GMT). This earthquake was recorded on a strong motion array installed in this region. The maximum peak ground acceleration of 353 cm/sec2 was recorded at an accelerograph located at the Gopeshwar station at an approximate epicentral distance of 14 km. The simplified method of Midorikawa (1993) has been used to model finite fault responsible for causing the Chamoli earthquake. This method is based on the Empirical Greens Function (EGF) technique of Irikura (1986).Modifications in this method have been made to include layered earth model and transmission effects at each boundary by Joshi (2001). Rupture causing the Chamoli earthquake is placed in two structural models of the earth in this work: one is a homogeneous half space and other is the multi layered earth model. Comparison in terms of root mean square error (RMSE) is made between the simulated and actual strong motion parameters like peak acceleration and duration. It is seen that the introduction of multi layered earth system in this simplified technique is capable of significantly reducing the RMSE in observed and predicted strong motion parameters and defining the attenuation rate for peak ground acceleration of this earthquake.
Journal of Seismology | 2000
A. Joshi
The rupture plane for an earthquake has been modelledby using the semi empirical technique of Midorikawa(1993). This technique estimates ground accelerationby modelling the rupture process during an earthquake.Modifications in this technique have been made for itsapplication to the Indian region. This has been tested forthe Uttarkashi earthquake of 20th Oct, 1991, India, whichwas well recorded at thirteen stations of installedstrong motion array in this region. After testingseveral possible rupture models, a final model has beenselected and peak ground acceleration due to thismodel is simulated at thirteen different stations.Dependency of methodology on model parameters, e.g.dip and mode of rupture propagation have also beenstudied in detail.Using this technique synthetic isoseismal maps wereprepared by converting peak ground acceleration intoMMI scale. Dependency of rupture models on syntheticisoseismals has also been studied in detail. Usingthis method, peak ground acceleration for the Laturearthquake of Sept 30, 1993 has been obtained atvarious places within meisoseismal area. Synthetic andfield intensity was compared at various well-knownsites. Since the region was not covered by anyinstrumental array during Latur earthquake, thesimulated peak ground accelerations are expected toserve basis of design criteria in this region.
International Journal of Geophysics | 2013
A. Joshi; Ashvini Kumar; Heriberta Castaños; Cinna Lomnitz
This paper presents use of semiempirical method for seismic hazard zonation. The seismotectonically important region of Uttarakhand Himalaya has been considered in this work. Ruptures along the lineaments in the area identified from tectonic map are modeled deterministically using semi empirical approach given by Midorikawa (1993). This approach makes use of attenuation relation of peak ground acceleration for simulating strong ground motion at any site. Strong motion data collected over a span of three years in this region have been used to develop attenuation relation of peak ground acceleration of limited magnitude and distance applicability. The developed attenuation relation is used in the semi empirical method to predict peak ground acceleration from the modeled rupture planes in the area. A set of values of peak ground acceleration from possible ruptures in the area at the point of investigation is further used to compute probability of exceedance of peak ground acceleration of values 100 and 200 gals. The prepared map shows that regions like Tehri, Chamoli, Almora, Srinagar, Devprayag, Bageshwar, and Pauri fall in a zone of 10% probability of exceedence of peak ground acceleration of value 200 gals.
Archive | 2013
M. Majumder; V. N. Singh; A. Joshi
Naturally fractured reservoirs are an important component of global hydrocarbon reserves and hence are gaining importance in case of earth resource exploration. This chapter deals with the study of the effect of fracture density on reflection response of the earth medium. The reflection coefficients due to the incident P-wave have been calculated for two types of models. In the first model, isotropic medium underlined by a horizontally fractured medium was considered which is equivalent to vertical transverse isotropic medium (VTI). In the second model, both the isotropic and anisotropic mediums are considered. The reflection coefficient for isotropic medium has been calculated using Ruger (Geophysics 62:713–722, 1997) equation and Graebner (Geophysics 57:1512–1519, 1992) equation was used for modeling VTI medium.
Journal of Seismology | 2004
A. Joshi; S. Midorikawa
Natural Hazards | 2012
A. Joshi; Pushpa Kumari; Sandeep Singh; M. L. Sharma
Natural Hazards | 2007
A. Joshi; Kapil Mohan; R. C. Patel