A. K. H. Kong
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. K. H. Kong.
Monthly Notices of the Royal Astronomical Society | 2000
A. K. H. Kong; Erik Kuulkers; P. A. Charles; L. Homer
We report BeppoSAX and optical observations of the black hole candidate GX 339-4 during its X-ray `off state in 1999. The broad-band (0.8-50 keV) X-ray emission can be fitted by a single power law with spectral index, alpha ~1.6. The observed luminosity is 6.6e33 erg s^{-1} in the 0.5-10 keV band, which is at the higher end of the flux distribution of black hole soft X-ray transients in quiescence, comparable to that seen in GS 2023+338 and 4U 1630-47. An optical observation just before the BeppoSAX observation shows the source to be very faint at these wavelengths as well (B=20.1, V=19.2). By comparing with previously reported `off and low states (LS), we conclude that the `off state is actually an extension of the LS, i.e. a LS at lower intensities. We propose that accretion models such as the advection-dominated accretion flows are able to explain the observed properties in such a state.
Monthly Notices of the Royal Astronomical Society | 2000
A. K. H. Kong; L. Homer; Erik Kuulkers; P. A. Charles; Alan P. Smale
We report results from the first simultaneous X-ray (RXTE) and optical (SAAO) observations of the low-mass X-ray binary GSxa01826–24 in 1998 June. A type I burst was detected in both X-ray and optical wavelengths. Its energy-dependent profile, energetics and spectral evolution provide evidence for an increase in the X-ray burning area but not for photospheric radius expansion. However, we may still derive an upper limit for its distance of 7.5±0.5xa0kpc, assuming a peak flux of ∼2.8×10−8xa0ergxa0cm−2xa0s−1. A ∼3-s optical delay with respect to the X-ray burst is also observed, and we infer that this is related to the X-ray reprocessing in the accretion disc. The delay provides additional support for the recently proposed orbital period of ∼2xa0h. We also present an ASCA observation from 1998 March, during which two X-ray bursts were detected.
The Astrophysical Journal | 2017
N. Blagorodnova; S. Gezari; T. Hung; S. R. Kulkarni; S. B. Cenko; Dheeraj R. Pasham; Lin Yan; I. Arcavi; Sagi Ben-Ami; Brian D. Bue; T. Cantwell; Y. Cao; A. J. Castro-Tirado; R. P. Fender; C. Fremling; Avishay Gal-Yam; A. Y. Q. Ho; Assaf Horesh; G. Hosseinzadeh; Mansi M. Kasliwal; A. K. H. Kong; R. R. Laher; G. Leloudas; R. Lunnan; Frank J. Masci; K. Mooley; James D. Neill; Peter E. Nugent; M. Powell; A. F. Valeev
We present ground-based and Swift observations of iPTF16fnl, a likely tidal disruption event (TDE) discovered by the intermediate Palomar Transient Factory (iPTF) survey at 66.6 Mpc. The light curve of the object peaked at an absolute mag M_g =- 17.2. The maximum bolometric luminosity (from optical and UV) was L_p ≃ (1.0 ± 0.15) x 10^(43) erg s^(−1), an order of magnitude fainter than any other optical TDE discovered so far. The luminosity in the first 60 days is consistent with an exponential decay, with L ∝ e^(-(t-t_0)/τ, where t_0 = 57631.0 (MJD) and τ ≃ 15 days. The X-ray shows a marginal detection at L_X = 2.4_(-1.1)^(1.9) x 10^(39) erg s^(−1) (Swift X-ray Telescope). No radio counterpart was detected down to 3σ, providing upper limits for monochromatic radio luminosities of vL_v < 2.3 x 10^(36) erg s^(−1) and vL_v < 1.7 x 10^(37) erg s^(−1) (Very Large Array, 6.1 and 22 GHz). The blackbody temperature, obtained from combined Swift UV and optical photometry, shows a constant value of 19,000 K. The transient spectrum at peak is characterized by broad He ii and Hα emission lines, with FWHMs of about 14,000 km s^(−1) and 10,000 km s^(−1), respectively. He i lines are also detected at λλ 5875 and 6678. The spectrum of the host is dominated by strong Balmer absorption lines, which are consistent with a post-starburst (E+A) galaxy with an age of ~650 Myr and solar metallicity. The characteristics of iPTF16fnl make it an outlier on both luminosity and decay timescales, as compared to other optically selected TDEs. The discovery of such a faint optical event suggests a higher rate of tidal disruptions, as low-luminosity events may have gone unnoticed in previous searches.
Monthly Notices of the Royal Astronomical Society | 2002
A. K. H. Kong; P. A. Charles; Erik Kuulkers; Shunji Kitamoto
With extensive monitoring data spanning over 30 years from Vela 5B, Ariel 5, Ginga, Compton Gamma Ray Observatory, Rossi X-ray Timing Explorer and BeppoSAX, we find evidence for long-term X-ray variability on time-scales ∼ 190-240 d from the black hole low-mass X-ray binary system GX 339-4. Such variability resembles the outburst cycle of Z Cam-type dwarf novae, in which the standard disc instability model plays a crucial role. If such a model is applicable to GX339-4, then the observed variability might be due to the irradiation of an unstable accretion disc. We show that within the framework of the X-ray irradiation model, when the accretion rate exceeds a critical value, GX 339-4 enters a flat-topped high/soft state, such as seen in 1998, which we suggest corresponds to the standstill state of Z Cam systems.
The Astrophysical Journal | 2017
V. Bhalerao; Mansi M. Kasliwal; D. Bhattacharya; A. Corsi; E. Aarthy; S. M. Adams; N. Blagorodnova; T. Cantwell; S. B. Cenko; R. P. Fender; Dale A. Frail; R. Itoh; Jacob E. Jencson; N. Kawai; A. K. H. Kong; T. Kupfer; Alexander S. Kutyrev; Ji-Rong Mao; S. Mate; N. P. S. Mithun; K. Mooley; Daniel A. Perley; Y. C. Perrott; Robert Michael Quimby; A. R. Rao; L. P. Singer; V. Sharma; David Titterington; Eleonora Troja; S. V. Vadawale
We present multi-wavelength follow-up campaigns by the AstroSat CZTI and GROWTH collaborations in search of an electromagnetic counterpart to the gravitational wave event GW 170104. At the time of the GW 170104 trigger, the AstroSat CZTI field of view covered 50.3% of the sky localization. We do not detect any hard X-ray (>100 keV) signal at this time, and place an upper limit of ≈4.5 x 10^(-7) erg cm^(-2) s^(-1), for a 1 s timescale. Separately, the ATLAS survey reported a rapidly fading optical source dubbed ATLAS17aeu in the error circle of GW 170104. Our panchromatic investigation of ATLAS17aeu shows that it is the afterglow of an unrelated long, soft GRB 170105A, with only a fortuitous spatial coincidence with GW 170104. We then discuss the properties of this transient in the context of standard long GRB afterglow models.
Monthly Notices of the Royal Astronomical Society | 2006
A. K. H. Kong; P. A. Charles; L. Homer; Erik Kuulkers; D. O'Donoghue
We report on the results of the first simultaneous X-ray (RXTE) and optical [South African Astronomical Observatory (SAAO)] observations of the luminous low-mass X-ray binary (LMXB) GX 9+9 in 1999 August. The high-speed optical photometry revealed an orbital period of 4.1958 h and confirmed previous observations, but with greater precision. No X-ray modulation was found at the orbital period. On shorter time-scales, a possible 1.4-h variability was found in the optical light curves which might be related to the MHz quasi-periodic oscillations seen in other LMXBs. We do not find any significant X-ray/optical correlation in the light curves. In X-rays, the colour-colour and hardness-intensity diagrams indicate that the source shows characteristics of an atoll source in the upper banana state, with a correlation between intensity and spectral hardness. Time-resolved X-ray spectroscopy suggests that two-component spectral models give a reasonable fit to the X-ray emission. Such models consist of a blackbody component which can be interpreted as the emission from an optically thick accretion disc or an optically thick boundary layer, and a hard Comptonized component for an extended corona.
Astrophysical Journal Supplement Series | 2018
T. Hung; Rupak Roy; S. B. Cenko; C. Fremling; P. Nugent; Tanja Petrushevska; N. Blagorodnova; A. K. H. Kong; Lin Yan; R. Lunnan; Y. Cao; G. Leloudas; S. van Velzen; T. Kupfer; Frank J. Masci; S. R. Kulkarni; S. Gezari; Russ R. Laher
We present results from a systematic selection of tidal disruption events (TDEs) in a wide-area (4800 deg2), g + R band, Intermediate Palomar Transient Factory (iPTF) experiment. Our selection targets typical optically-selected TDEs: bright (>60% flux increase) and blue transients residing in the center of red galaxies. Using photometric selection criteria to down-select from a total of 493 nuclear transients to a sample of 26 sources, we then use follow-up UV imaging with the Neil Gehrels Swift Telescope, ground-based optical spectroscopy, and light curve fitting to classify them as 14 Type Ia supernovae (SNe Ia), 9 highly variable active galactic nuclei (AGNs), 2 confirmed TDEs, and 1 potential core-collapse supernova. We find it possible to filter AGNs by employing a more stringent transient color cut (g - r < -0.2 mag); further, UV imaging is the best discriminator for filtering SNe, since SNe Ia can appear as blue, optically, as TDEs in their early phases. However, when UV-optical color is unavailable, higher precision astrometry can also effectively reduce SNe contamination in the optical. Our most stringent optical photometric selection criteria yields a 4.5:1 contamination rate, allowing for a manageable number of TDE candidates for complete spectroscopic follow-up and real-time classification in the ZTF era. We measure a TDE per galaxy rate of 1.7 - 1.3 + 2.9 × 10 - 4 gal - 1 yr - 1 (90% CL in Poisson statistics). This does not account for TDEs outside our selection criteria, thus may not reflect the total TDE population, which is yet to be fully mapped.
The Astrophysical Journal | 2017
Chin-Ping Hu; K. L. Li; A. K. H. Kong; Lupin Chun-Che Lin
NGC 7793 P13 is an ultraluminous X-ray source harboring an accreting pulsar. We report on the detection of a ~65 day period X-ray modulation with Swift observations in this system. The modulation period found in the X-ray band is P = 65.05 ± 0.10 days and the profile is asymmetric with a fast rise and a slower decay. On the other hand, the u-band light curve collected by Swift UVOT confirmed an optical modulation with a period of P = 64.24 ± 0.13 days. We explored the phase evolution of the X-ray and optical periodicities and propose two solutions. A superorbital modulation with a period of ~2700–4700 days probably caused by the precession of a warped accretion disk is necessary to interpret the phase drift of the optical data. We further discuss the implication if this ~65 day periodicity is caused by the superorbital modulation. Estimated from the relationship between the spin-orbital and orbital-superorbital periods of known disk-fed high-mass X-ray binaries, the orbital period of P13 is roughly estimated as 3–7 days. In this case, an unknown mechanism with a much longer timescale is needed to interpret the phase drift. Further studies on the stability of these two periodicities with a long-term monitoring could help us to probe their physical origins.
The Astrophysical Journal | 2017
K. L. Li; A. K. H. Kong; P. H. T. Tam; Xian Hou; J. Takata; C. Y. Hui
We report our recent Swift, NuSTAR, and XMM-Newton X-ray and Lijiang optical observations on PSR J2032+4127/MT91 213, the γ-ray binary candidate with a period of 45–50 years. The coming periastron of the system was predicted to be in 2017 November, around which high-energy flares from keV to TeV are expected. Recent studies with Chandra and Swift X-ray observations taken in 2015/2016 showed that its X-ray emission has been brighter by a factors of ~10 than that before 2013, probably revealing some ongoing activities between the pulsar wind and the stellar wind. Our new Swift/XRT lightcurve shows no strong evidence of a single vigorous brightening trend, but rather several strong X-ray flares on weekly to monthly timescales with a slowly brightening baseline, namely the low state. The NuSTAR and XMM-Newton observations taken during the flaring and the low states, respectively, show a denser environment and a softer power-law index during the flaring state, implying that the pulsar wind interacted with the stronger stellar winds of the companion to produce the flares. These precursors would be crucial in studying the predicted giant outburst from this extreme γ-ray binary during the periastron passage in late 2017.
The Astrophysical Journal | 2017
A. K. H. Kong; C. Y. Hui; J. Takata; K. L. Li; P. H. T. Tam
We report on the first NuSTAR observation of the gamma-ray emitting millisecond pulsar binary PSR J1723–2837. X-ray radiation up to 79 keV is clearly detected, and the simultaneous NuSTAR and Swift spectrum is well described by an absorbed power law with a photon index of ~1.3. We also find X-ray modulations in the 3–10, 10–20, 20–79, and 3–79 keV bands at the 14.8 hr binary orbital period. All of these are entirely consistent with previous X-ray observations below 10 keV. This new hard X-ray observation of PSR J1723–2837 provides strong evidence that the X-rays are from the intrabinary shock via an interaction between the pulsar wind and the outflow from the companion star. We discuss how the NuSTAR observation constrains the physical parameters of the intrabinary shock model.