A. K. Romer
University of Sussex
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. K. Romer.
The Astrophysical Journal | 2015
K. Bechtol; A. Drlica-Wagner; E. Balbinot; A. Pieres; J. D. Simon; Brian Yanny; B. Santiago; Risa H. Wechsler; Joshua A. Frieman; Alistair R. Walker; P. Williams; Eduardo Rozo; Eli S. Rykoff; A. Queiroz; E. Luque; A. Benoit-Lévy; Douglas L. Tucker; I. Sevilla; Robert A. Gruendl; L. N. da Costa; A. Fausti Neto; M. A. G. Maia; T. D. Abbott; S. Allam; R. Armstrong; A. Bauer; G. M. Bernstein; R. A. Bernstein; E. Bertin; David J. Brooks
We report the discovery of eight new Milky Way companions in ~1,800 deg^2 of optical imaging data collected during the first year of the Dark Energy Survey (DES). Each system is identified as a statistically significant over-density of individual stars consistent with the expected isochrone and luminosity function of an old and metal-poor stellar population. The objects span a wide range of absolute magnitudes (M_V from -2.2 mag to -7.4 mag), physical sizes (10 pc to 170 pc), and heliocentric distances (30 kpc to 330 kpc). Based on the low surface brightnesses, large physical sizes, and/or large Galactocentric distances of these objects, several are likely to be new ultra-faint satellite galaxies of the Milky Way and/or Magellanic Clouds. We introduce a likelihood-based algorithm to search for and characterize stellar over-densities, as well as identify stars with high satellite membership probabilities. We also present completeness estimates for detecting ultra-faint galaxies of varying luminosities, sizes, and heliocentric distances in the first-year DES data.
Astronomy and Astrophysics | 2007
H. Böhringer; Peter Schuecker; G. W. Pratt; M. Arnaud; T. J. Ponman; J. H. Croston; Stefano Borgani; Richard G. Bower; Ulrich G. Briel; Chris A. Collins; Megan Donahue; W. Forman; Alexis Finoguenov; Margaret J. Geller; L. Guzzo; J. P. Henry; R. Kneissl; J. J. Mohr; Kyoko Matsushita; C. R. Mullis; Takaya Ohashi; D. Pierini; H. Quintana; Somak Raychaudhury; Thomas H. Reiprich; A. K. Romer; P. Rosati; Kivanc Sabirli; R. F. Temple; Pedro T. P. Viana
Context.The largest uncertainty for cosmological studies using clusters of galaxies is introduced by our limited knowledge of the statistics of galaxy cluster structure, and of the scaling relations between observables and cluster mass.
The Astrophysical Journal | 2017
A. K. Romer
We search for excess gamma-ray emission coincident with the positions of confirmed and candidate Milky Way satellite galaxies using six years of data from the Fermi Large Area Telescope (LAT). Our sample of 45 stellar systems includes 28 kinematically confirmed dark-matter-dominated dwarf spheroidal galaxies (dSphs) and 17 recently discovered systems that have photometric characteristics consistent with the population of known dSphs. For each of these targets, the relative predicted gamma-ray flux due to dark matter annihilation is taken from kinematic analysis if available, and estimated from a distance-based scaling relation otherwise, assuming that the stellar systems are DM-dominated dSphs. LAT data coincident with four of the newly discovered targets show a slight preference (each ~ 2sigma local) for gamma-ray emission in excess of the background. However, the ensemble of derived gamma-ray flux upper limits for individual targets is consistent with the expectation from analyzing random blank-sky regions, and a combined analysis of the population of stellar systems yields no globally significant excess (global significance < 1sigma ). Our analysis has increased sensitivity compared to the analysis of 15 confirmed dSphs by Ackermann et al. The observed constraints on the DM annihilation cross section are statistically consistent with the background expectation, improving by a factor of ~2 for large DM masses ({m}{DM,b\bar{b}}≳ 1 {TeV} and {m}{DM,{tau }+{tau }-}≳ 70 {GeV}) and weakening by a factor of ~1.5 at lower masses relative to previously observed limits.
Astronomy and Astrophysics | 2002
M. Arnaud; S. Majerowicz; D. Lumb; Doris M. Neumann; N. Aghanim; Alain Blanchard; M. Boer; Douglas J. Burke; Chris A. Collins; M. Giard; J Nevalainen; Robert C. Nichol; A. K. Romer; R Sadat
We report on a 20 ks XMM observation of the distant cluster RX J1120.1+4318, discovered at z = 0.6 in the SHARC survey. The cluster has a regular spherical morphology, suggesting it is in a relaxed state. The combined fit of the EPIC/MOS&pn camera gives a cluster mean temperature of kT = 5.3 +/- 0.5 keV with an iron abundance of 0.47 +/- 0.19. The temperature profile, measured for the first time at such a redshift, is consistent with an isothermal atmosphere up to half the virial radius. The surface brightness profile, measured nearly up to the virial radius, is well fitted by a beta-model, with beta = 0.78(-0.04)(+0.06) and a core radius of theta(c) = 0.44(-0.04)(+0.06) arcmin. We compared the properties of RX J1120.1+4318 with the properties of nearby clusters for two cosmological models. an Einstein-de Sitter Universe and a flat low density Universe with Omega(0) = 0.3. For both models, the scaled emission measure profile beyond the core, the gas mass fraction and luminosity are consistent with the expectations of the self-similar model of cluster formation, although a slightly better agreement is obtained for a low density Universe. There is no evidence of a central cooling flow, in spite of the apparent relaxed state of the cluster. This is consistent with its estimated cooling time, larger than the age of the Universe at the cluster redshift. The entropy profile shows a flat core with a central entropy of similar to140 keV cm(2), remarkably similar to the entropy floor observed in nearby clusters, and a rising profile beyond typically 0.1 virial radius. Implications of our results, in terms of non-gravitational physics in cluster formation, are discussed.
The Astrophysical Journal | 2010
John P. Stott; Chris A. Collins; Martin Sahlén; Matt Hilton; Edward Lloyd-Davies; D. Capozzi; Mark Hosmer; Andrew R. Liddle; Nicola Mehrtens; Christopher J. Miller; A. K. Romer; S. A. Stanford; Pedro T. P. Viana; M. Davidson; Ben Hoyle; Scott T. Kay; Robert C. Nichol
We present deep J- and Ks -band photometry of 20 high redshift galaxy clusters between z = 0.8 and1.5, 19 of which are observed with the MOIRCS instrument on the Subaru telescope. By using near-infrared light as a proxy for stellar mass we find the surprising result that the average stellar mass of Brightest Cluster Galaxies (BCGs) has remained constant at ~9 × 1011 M ☉ since z ~ 1.5. We investigate the effect on this result of differing star formation histories generated by three well-known and independent stellar population codes and find it to be robust for reasonable, physically motivated choices of age and metallicity. By performing Monte Carlo simulations we find that the result is unaffected by any correlation between BCG mass and cluster mass in either the observed or model clusters. The large stellar masses imply that the assemblage of these galaxies took place at the same time as the initial burst of star formation. This result leads us to conclude that dry merging has had little effect on the average stellar mass of BCGs over the last 9-10 Gyr in stark contrast to the predictions of semi-analytic models, based on the hierarchical merging of dark matter halos, which predict a more protracted mass build-up over a Hubble time. However, we discuss that there is potential for reconciliation between observation and theory if there is a significant growth of material in the intracluster light over the same period.
Physical Review D | 2016
A. K. Romer
We present the first constraints on cosmology from the Dark Energy Survey (DES), using weak lensing measurements from the preliminary Science Verification (SV) data. We use 139 square degrees of SV data, which is less than 3% of the full DES survey area. Using cosmic shear 2-point measurements over three redshift bins we find sigma8(Omegam/0.3 )0.5=0.81 ±0.06 (68% confidence), after marginalizing over 7 systematics parameters and 3 other cosmological parameters. We examine the robustness of our results to the choice of data vector and systematics assumed, and find them to be stable. About 20% of our error bar comes from marginalizing over shear and photometric redshift calibration uncertainties. The current state-of-the-art cosmic shear measurements from CFHTLenS are mildly discrepant with the cosmological constraints from Planck CMB data; our results are consistent with both data sets. Our uncertainties are ˜30 % larger than those from CFHTLenS when we carry out a comparable analysis of the two data sets, which we attribute largely to the lower number density of our shear catalogue. We investigate constraints on dark energy and find that, with this small fraction of the full survey, the DES SV constraints make negligible impact on the Planck constraints. The moderate disagreement between the CFHTLenS and Planck values of sigma8(Omegam/0.3 )0.5 is present regardless of the value of w .
Monthly Notices of the Royal Astronomical Society | 2016
M. Jarvis; E. Sheldon; J. Zuntz; Tomasz Kacprzak; Sarah Bridle; Adam Amara; Robert Armstrong; M. R. Becker; G. M. Bernstein; C. Bonnett; C. L. Chang; Ritanjan Das; J. P. Dietrich; A. Drlica-Wagner; T. F. Eifler; C. Gangkofner; D. Gruen; Michael Hirsch; Eric Huff; Bhuvnesh Jain; S. Kent; D. Kirk; N. MacCrann; P. Melchior; A. A. Plazas; Alexandre Refregier; Barnaby Rowe; E. S. Rykoff; S. Samuroff; C. Sanchez
We present weak lensing shear catalogues for 139 square degrees of data taken during the Science Verification (SV) time for the new Dark Energy Camera (DECam) being used for the Dark Energy Survey (DES). We describe our object selection, point spread function estimation and shear measurement procedures using two independent shear pipelines, IM3SHAPE and NGMIX, which produce catalogues of 2.12 million and 3.44 million galaxies respectively. We detail a set of null tests for the shear measurements and find that they pass the requirements for systematic errors at the level necessary for weak lensing science applications using the SV data. We also discuss some of the planned algorithmic improvements that will be necessary to produce sufficiently accurate shear catalogues for the full 5-year DES, which is expected to cover 5000 square degrees.
The Astrophysical Journal | 1999
Daniel E. Reichart; Robert C. Nichol; Francisco J. Castander; Douglas J. Burke; A. K. Romer; B. P. Holden; Chris A. Collins; and M. P. Ulmer
From the Press-Schechter mass function and the empirical X-ray cluster luminosity-temperature (L-T) relation, we construct an X-ray cluster luminosity function that can be applied to the growing number of high-redshift, X-ray cluster luminosity catalogs to constrain cosmological parameters. In this paper, we apply this luminosity function to the Einstein Medium Sensitivity Survey (EMSS) and the ROSAT Brightest Cluster Sample (BCS) luminosity function to constrain the value of ?m. In the case of the EMSS, we find a factor of 4-5 fewer X-ray clusters at redshifts above z = 0.4 than below this redshift at luminosities above LX = 7 ? 1044 ergs s-1 (0.3-3.5 keV), which suggests that the X-ray cluster luminosity function has evolved above L*. At lower luminosities, this luminosity function evolves only minimally, if at all. Using Bayesian inference, we find that the degree of evolution at high luminosities suggests that ?m=0.96+0.36-0.32, given the best-fit L-T relation of Reichart, Castander, & Nichol. When we account for the uncertainty in how the empirical L-T relation evolves with redshift, we find that ?m ? 1.0 ? 0.4. However, it is unclear to what degree systematic effects may affect this and similarly obtained results.
The Astrophysical Journal | 2015
J. D. Simon; A. Drlica-Wagner; T. S. Li; B. Nord; Marla Geha; K. Bechtol; E. Balbinot; Elizabeth J. Buckley-Geer; H. Lin; J. L. Marshall; B. Santiago; Louis E. Strigari; Mei-Yu Wang; Risa H. Wechsler; Brian Yanny; T. D. Abbott; A. Bauer; G. M. Bernstein; E. Bertin; David J. Brooks; David L. Burke; D. Capozzi; A. Carnero Rosell; M. Carrasco Kind; C. B. D'Andrea; L. N. da Costa; D. L. DePoy; S. Desai; H. T. Diehl; Scott Dodelson
We present Magellan/M2FS, VLT/GIRAFFE, and Gemini South/GMOS spectroscopy of the newly discovered Milky Way satellite Reticulum II. Based on the spectra of 25 Ret II member stars selected from Dark Energy Survey imaging, we measure a mean heliocentric velocity of 62.8 +/- 0.5 km/s and a velocity dispersion of 3.3 +/- 0.7 km/s. The mass-to-light ratio of Ret II within its half-light radius is 470 +/- 210 Msun/Lsun, demonstrating that it is a strongly dark matter-dominated system. Despite its spatial proximity to the Magellanic Clouds, the radial velocity of Ret II differs from that of the LMC and SMC by 199 and 83 km/s, respectively, suggesting that it is not gravitationally bound to the Magellanic system. The likely member stars of Ret II span 1.3 dex in metallicity, with a dispersion of 0.28 +/- 0.09 dex, and we identify several extremely metal-poor stars with [Fe/H] < -3. In combination with its luminosity, size, and ellipticity, these results confirm that Ret II is an ultra-faint dwarf galaxy. With a mean metallicity of [Fe/H] = -2.65 +/- 0.07, Ret II matches Segue~1 as the most metal-poor galaxy known. Although Ret II is the third-closest dwarf galaxy to the Milky Way, the line-of-sight integral of the dark matter density squared is log J = 18.8 +/- 0.6 Gev^2/cm^5 within 0.2 degrees, indicating that the predicted gamma-ray flux from dark matter annihilation in Ret II is lower than that of several other dwarf galaxies.
Publications of the Astronomical Society of the Pacific | 2012
J.-C. Mauduit; M. Lacy; D. Farrah; Jason A. Surace; M. J. Jarvis; Seb Oliver; Claudia Maraston; M. Vaccari; L. Marchetti; Gregory R. Zeimann; E. Gonzales-Solares; Janine Pforr; Andreea Oana Petric; B. Henriques; Peter A. Thomas; J. Afonso; Alessandro Rettura; Gillian Wilson; J. T. Falder; James E. Geach; Minh Huynh; R. P. Norris; N. Seymour; Gordon T. Richards; S. A. Stanford; D. M. Alexander; Robert H. Becker; Philip Best; L. Bizzocchi; D. G. Bonfield
We present the Spitzer Extragalactic Representative Volume Survey (SERVS), an 18 square degrees medium-deep survey at 3.6 and 4.5 microns with the post-cryogenic Spitzer Space Telescope to ~2 microJy (AB=23.1) depth of five highly observed astronomical fields (ELAIS-N1, ELAIS-S1, Lockman Hole, Chandra Deep Field South and XMM-LSS). SERVS is designed to enable the study of galaxy evolution as a function of environment from z~5 to the present day, and is the first extragalactic survey both large enough and deep enough to put rare objects such as luminous quasars and galaxy clusters at z>1 into their cosmological context. SERVS is designed to overlap with several key surveys at optical, near- through far-infrared, submillimeter and radio wavelengths to provide an unprecedented view of the formation and evolution of massive galaxies. In this paper, we discuss the SERVS survey design, the data processing flow from image reduction and mosaicing to catalogs, as well as coverage of ancillary data from other surveys in the SERVS fields. We also highlight a variety of early science results from the survey.