A. Karampelas
National and Kapodistrian University of Athens
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Karampelas.
Astronomy and Astrophysics | 2013
Coryn A. L. Bailer-Jones; R. Andrae; Bernardino Arcay; T. L. Astraatmadja; I. Bellas-Velidis; A. Berihuete; A. Bijaoui; Claire Carrion; Carlos Dafonte; Y. Damerdji; A. Dapergolas; P. de Laverny; L. Delchambre; P. Drazinos; R. Drimmel; Y. Frémat; Diego Fustes; M. García-Torres; C. Guede; Ulrike Heiter; A.-M. Janotto; A. Karampelas; Dae-Won Kim; Jens Knude; I. Kolka; E. Kontizas; M. Kontizas; A. Korn; Alessandro C. Lanzafame; Yveline Lebreton
The Gaia satellite will survey the entire celestial sphere down to 20th magnitude, obtaining astrometry, photometry, and low resolution spectrophotometry on one billion astronomical sources, plus radial velocities for over one hundred million stars. Its main objective is to take a census of the stellar content of our Galaxy, with the goal of revealing its formation and evolution. Gaias unique feature is the measurement of parallaxes and proper motions with hitherto unparalleled accuracy for many objects. As a survey, the physical properties of most of these objects are unknown. Here we describe the data analysis system put together by the Gaia consortium to classify these objects and to infer their astrophysical properties using the satellites data. This system covers single stars, (unresolved) binary stars, quasars, and galaxies, all covering a wide parameter space. Multiple methods are used for many types of stars, producing multiple results for the end user according to different models and assumptions. Prior to its application to real Gaia data the accuracy of these methods cannot be assessed definitively. But as an example of the current performance, we can attain internal accuracies (RMS residuals) on F,G,K,M dwarfs and giants at G=15 (V=15-17) for a wide range of metallicites and interstellar extinctions of around 100K in effective temperature (Teff), 0.1mag in extinction (A0), 0.2dex in metallicity ([Fe/H]), and 0.25dex in surface gravity (logg). The accuracy is a strong function of the parameters themselves, varying by a factor of more than two up or down over this parameter range. After its launch in November 2013, Gaia will nominally observe for five years, during which the system we describe will continue to evolve in light of experience with the real data.
Astronomy and Astrophysics | 2009
I. Gonidakis; E. Livanou; E. Kontizas; U. Klein; M. Kontizas; M. Belcheva; P. Tsalmantza; A. Karampelas
Aims. The spatial distribution of the SMC stellar component is investigated from 2MASS data. The morphology of the different age populations is presented. The center of the distribution is calculated and compared with previous estimations. The rotation of the stellar content and possible consequence of the presence of dark matter is discussed. Methods. The different stellar populations are identified through a CMD diagram of the 2MASS data. Isopleth contour maps are produced in each case, to reveal the spatial distribution. The derived density profiles are discussed. Results. The older stellar population follows an exponential profile at projected diameters of about 5 kpc (∼5 ◦ ) for the major axis and ∼4 kpc for the minor axis, centred at RA: 0 h 51 min , Dec: −73 ◦ 7 � (J2000.0). The centre coordinates are found to be the same for all the different age population maps and are in good accordance with the kinematical centre of the SMC. However they are found to be considerably different to the coordinates of the centre of the gas distribution. The fact that the older population is found in an exponential disk suggests that the stellar content is rotating, a possible consequence of dark matter presence. The strong interactions between the MCs and the MilkyWay might explain the difference in the distributions of the stellar and gas components. The lack of an observed velocity element, which implies an absence of rotation and contradicts the consequences of an exponential profile of the stellar component, may also be a result of gravitational interactions.
Astronomy and Astrophysics | 2012
P. Tsalmantza; A. Karampelas; M. Kontizas; Coryn A. L. Bailer-Jones; B. Rocca-Volmerange; E. Livanou; I. Bellas-Velidis; E. Kontizas; A. Vallenari
Aims:This paper is the third in a series implementing a classification system for Gaia observations of unresolved galaxies. The system makes use of template galaxy spectra in order to determine spectral classes and estimate intrinsic astrophysical parameters. In previous work we used synthetic galaxy spectra produced by PEGASE.2 code to simulate Gaia observations and to test the performance of Support Vector Machine (SVM) classifiers and parametrizers. Here we produce a semi-empirical library of galaxy spectra by fitting SDSS spectra with the previously produced synthetic libraries. We present (1) the semi-empirical library of galaxy spectra, (2) a comparison between the observed and synthetic spectra, and (3) first results of claassification and parametrization experiments with simulated Gaia spectrophotometry of this library. Methods: We use chi2-fitting to fit SDSS galaxy spectra with the synthetic library in order to construct a semi-empirical library of galaxy spectra in which (1) the real spectra are extended by the synthetic ones in order to cover the full wavelength range of Gaia, and (2) astrophysical parameters are assigned to the SDSS spectra by the best fitting synthetic spectrum. The SVM models were trained with and applied to semi-empirical spectra. Tests were performed for the classification of spectral types and the estimation of the most significant galaxy parameters (in particular redshift, mass to light ratio and star formation history). Results: We produce a semi-empirical library of 33670 galaxy spectra covering the wavelength range 250 to 1050 nm at a sampling of 1 nm or less. Using the results of the fitting of the SDSS spectra with our synthetic library, we investigate the range of the input model parameters that produces spectra which are in good agreement with observations. (abridged)
Astronomy and Astrophysics | 2009
A. Karampelas; A. Dapergolas; E. Kontizas; E. Livanou; M. Kontizas; I. Bellas-Velidis; J. M. Vílchez
Aims. The star complexes (large scale star forming regions) of NGC 6822 were traced and mapped and their size distribution was compared with the size distribution of star complexes in the Magellanic Clouds (MCs). The spatial distributions of different age stellar populations were compared with each other. Methods. The star complexes of NGC 6822 were determined by using the isopleths, based on star counts, of the young stars of the galaxy, using a statistical cutoff limit in density. In order to map them and determine their geometric properties, an ellipse was fitted to each distinct region satisfying this minimum limit. The Kolmogorov-Smirnov statistical test was used to study possible patterns in their size distribution. Isopleths were also used to study the stellar populations of NGC 6822. Results. The star complexes of NGC 6822 were detected and a list of their positions and sizes was produced. Indications of hierarchical star formation, in terms of spatial distribution, time evolution and preferable sizes were found in NGC 6822 and the MCs. The spatial distribution of the various age stellar populations has indicated traces of an interaction in NGC 6822, dated before 350 ± 50 Myr.
Astronomy and Astrophysics | 2013
E. Livanou; A. Dapergolas; M. Kontizas; B. Nordström; E. Kontizas; J. Andersen; B. Dirsch; A. Karampelas
Aims. We study small open star clusters, using Strömgren photometry to investigate a possible dependence between age and metallicity in the Magellanic Clouds (MCs). Our goals are to trace evidence of an age metallicity relation (AMR) and correlate it with the mutual interactions of the two MCs and to correlate the AMR with the spatial distribution of the clusters. In the Large Magellanic Cloud (LMC), the majority of the selected clusters are young (up to 1 Gyr), and we search for an AMR at this epoch, which has not been much studied. Methods. We report results for 15 LMC and 8 Small Magellanic Cloud (SMC) clusters, scattered all over the area of these galaxies, to cover a wide spatial distribution and metallicity range. The selected LMC clusters were observed with the 1.54 m Danish Telescope in Chile, using the Danish Faint Object Spectrograph and Camera (DFOSC) with a single 2k × 2k CCD. The SMC clusters were observed with the ESO 3.6 m Telescope, also in Chile, using the ESO Faint Object Spectrograph and Camera (EFOSC). The obtained frames were analysed with the conventional DAOPHOT and IRAF software. We used Strömgren filters in order to achieve reliable metallicities from photometry. Isochrone fitting was used to determine the ages and metallicities. Results. The AMR for the LMC displays a metallicity gradient, with higher metallicities for the younger ages. The AMR for LMCSMC star clusters shows a possible jump in metallicity and a considerable increase at about 6 × 108 yr. It is possible that this is connected to the latest LMC-SMC interaction. The AMR for the LMC also displays a metallicity gradient with distance from the centre. The metallicities in SMC are lower, as expected for a metal-poor host galaxy.
Astronomy and Astrophysics | 2012
A. Karampelas; M. Kontizas; B. Rocca-Volmerange; I. Bellas-Velidis; E. Kontizas; E. Livanou; P. Tsalmantza; A. Dapergolas
Eas Publications Series | 2010
M. Kontizas; I. Bellas-Velidis; B. Rocca-Volmerange; E. Kontizas; P. Tsalmantza; E. Livanou; A. Dapergolas; A. Karampelas
publisher | None
author
Astronomy and Astrophysics | 2013
P. Drazinos; E. Kontizas; A. Karampelas; M. Kontizas; A. Dapergolas