A. Kaufer
European Southern Observatory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Kaufer.
The Astrophysical Journal | 2005
F. Eisenhauer; R. Genzel; Tal Alexander; R. Abuter; T. Paumard; T. Ott; Andrea M. Gilbert; S. Gillessen; M. Horrobin; Sascha Trippe; Henri Bonnet; Christophe Dumas; Norbert Hubin; A. Kaufer; Markus Kissler-Patig; Guy J. Monnet; S. Ströbele; T. Szeifert; A. Eckart; R. Schödel; Shay Zucker
We report 75 milli-arcsec resolution, near-IR imaging spectroscopy within the central 30 light days of the Galactic Center [...]. To a limiting magnitude of K~16, 9 of 10 stars in the central 0.4 arcsec, and 13 of 17 stars out to 0.7 arcsec from the central black hole have spectral properties of B0-B9, main sequence stars. [...] all brighter early type stars have normal rotation velocities, similar to solar neighborhood stars. We [...] derive improved 3d stellar orbits for six of these S-stars in the central 0.5 arcsec. Their orientations in space appear random. Their orbital planes are not co-aligned with those of the two disks of massive young stars 1-10 arcsec from SgrA*. We can thus exclude [...] that the S-stars as a group inhabit the inner regions of these disks. They also cannot have been located/formed in these disks [...]. [...] we conclude that the S-stars were most likely brought into the central light month by strong individual scattering events. The updated estimate of distance to the Galactic center from the S2 orbit fit is Ro = 7.62 +/- 0.32 kpc, resulting in a central mass value of 3.61 +/- 0.32 x 10^6 Msun. We happened to catch two smaller flaring events from SgrA* [...]. The 1.7-2.45 mum spectral energy distributions of these flares are fit by a featureless, red power law [...]. The observed spectral slope is in good agreement with synchrotron models in which the infrared emission comes from [...] radiative inefficient accretion flow in the central R~10 Rs region.
The Astrophysical Journal | 2006
Amina Helmi; M. J. Irwin; Eline Tolstoy; G. Battaglia; V. Hill; Pascale Jablonka; Kim A. Venn; Matthew Shetrone; B. Letarte; Nobuo Arimoto; Tom Abel; P. Francois; A. Kaufer; F. Primas; Kozo Sadakane; T. Szeifert
As part of the Dwarf galaxies Abundances and Radial-velocities Team (DART) program, we have measured the metallicities of a large sample of stars in four nearby dwarf spheroidal galaxies (dSphs): Sculptor, Sextans, Fornax, and Carina. The low mean metal abundances and the presence of very old stellar populations in these galaxies have supported the view that they are fossils from the early universe. However, contrary to naive expectations, we find a significant lack of stars with metallicities below [Fe/H] ~ -3 dex in all four systems. This suggests that the gas that made up the stars in these systems had been uniformly enriched prior to their formation. Furthermore, the metal-poor tail of the dSph metallicity distribution is significantly different from that of the Galactic halo. These findings show that the progenitors of nearby dSphs appear to have been fundamentally different from the building blocks of the Milky Way, even at the earliest epochs.
Astronomy and Astrophysics | 2010
B. Letarte; V. Hill; Eline Tolstoy; P. Jablonka; Matthew Shetrone; Kim A. Venn; Monique Spite; M. J. Irwin; G. Battaglia; Amina Helmi; F. Primas; P. Francois; A. Kaufer; T. Szeifert; Nobuo Arimoto; Kozo Sadakane
For the first time we show the detailed, late-stage, chemical evolution history of a small nearby dwarf spheroidal galaxy in the Local Group. We present the results of a high-resolution (R ~ 20 000, λ = 5340–5620; 6120–6701) FLAMES/GIRAFFE abundance study at ESO/VLT of 81 photometrically selected, red giant branch stars in the central 25 of the Fornax dwarf spheroidal galaxy. We also carried out a detailed comparison of the effects of recent developments in abundance analysis (e.g., spherical models vs. plane-parallel) and the automation that is required to efficiently deal with such large data sets. We present abundances of α-elements (Mg, Si, Ca, and Ti), iron-peak elements (Fe, Ni, and Cr), and heavy elements (Y, Ba, La, Nd, and Eu). Our sample was randomly selected and is clearly dominated by the younger and more metal-rich component of Fornax, which represents the major fraction of stars in the central region. This means that the majority of our stars are 1−4 Gyr old, and thus represent the end phase of chemical evolution in this system. Our sample of stars has unusually low [α/Fe], [Ni/Fe], and [Na/Fe] compared to the Milky Way stellar populations at the same [Fe/H]. The particularly important role of stellar winds from low-metallicity AGB stars in the creation of s-process elements is clearly seen from the high [Ba/Y]. Furthermore, we present evidence of an s-process origin of Eu.
Astronomy and Astrophysics | 2010
M. Tafelmeyer; Pascale Jablonka; V. Hill; Matthew Shetrone; Eline Tolstoy; M. J. Irwin; G. Battaglia; Amina Helmi; Else Starkenburg; Kim A. Venn; Tom Abel; P. Francois; A. Kaufer; P. North; F. Primas; T. Szeifert
We present the results of a dedicated search for extremely metal-poor stars in the Fornax, Sculptor, and Sextans dSphs. Five stars were selected from two earlier VLT/Giraffe and HET/HRS surveys and subsequently followed up at high spectroscopic resolution with VLT/UVES. All of them turned out to have [Fe/H] less than or similar to -3 and three stars are below [Fe/H] similar to -3.5. This constitutes the first evidence that the classical dSphs Fornax and Sextans join Sculptor in containing extremely metal-poor stars and suggests that all of the classical dSphs contain extremely metal-poor stars. One giant in Sculptor at [Fe/H] = -3.96+/-0.06 is the most metal-poor star ever observed in an external galaxy. We carried out a detailed analysis of the chemical abundances of the alpha, iron peak, and the heavy elements, and we performed a comparison with the Milky Way halo and the ultra faint dwarf stellar populations. Carbon, barium, and strontium show distinct features characterized by the early stages of galaxy formation and can constrain the origin of their nucleosynthesis.
Astronomy and Astrophysics | 2009
Wako Aoki; Nobuo Arimoto; Kozo Sadakane; Eline Tolstoy; G. Battaglia; Pascale Jablonka; Matthew Shetrone; B. Letarte; M. Irwin; V. Hill; P. Francois; Kim A. Venn; F. Primas; Amina Helmi; A. Kaufer; M. Tafelmeyer; T. Szeifert; C. Babusiaux
Context. Individual stars in dwarf spheroidal galaxies around the Milky Way Galaxy have been studied both photometrically and spectroscopically. Extremely metal-poor stars among them are very valuable because they should record the early enrichment in the Local Group. However, our understanding of these stars is very limited because detailed chemical abundance measurements are needed from high resolution spectroscopy. Aims. To constrain the formation and chemical evolution of dwarf galaxies, metallicity and chemical composition of extremely metal-poor stars are investigated. Methods. Chemical abundances of six extremely metal-poor ([Fe/H] < -2.5) stars in the Sextans dwarf spheroidal galaxy are determined based on high resolution spectroscopy (R=40 000) with the Subaru Telescope High Dispersion Spectrograph. Results. (1) The Fe abundances derived from the high resolution spectra are in good agreement with the metallicity estimated from the Ca triplet lines in low resolution spectra. The lack of stars with [Fe/H] ≲ -3 in Sextans, found by previous estimates from the Ca triplet, is confirmed by our measurements, although we note that high resolution spectroscopy for a larger sample of stars will be necessary to estimate the true fraction of stars with such low metallicity. (2) While one object shows an overabundance of Mg (similar to Galactic halo stars), the Mg/Fe ratios of the remaining five stars are similar to the solar value. This is the first time that low Mg/Fe ratios at such low metallicities have been found in a dwarf spheroidal galaxy. No evidence for over-abundances of Ca and Ti are found in these five stars, though the measurements for these elements are less certain. Possible mechanisms to produce low Mg/Fe ratios, with respect to that of Galactic halo stars, are discussed. (3) Ba is under-abundant in four objects, while the remaining two stars exhibit large and moderate excesses of this element. The abundance distribution of Ba in this galaxy is similar to that in the Galactic halo, indicating that the enrichment of heavy elements, probably by the r-process, started at metallicities [Fe/H] ≲ -2.5, as found in the Galactic halo.
Astronomy and Astrophysics | 2003
M. Kürster; Michael Endl; F. Rouesnel; S. Els; A. Kaufer; S. Brillant; A. Hatzes; Steven H. Saar; William D. Cochran
We report results from 2 1=2 yr of high precision radial velocity (RV) monitoring of Barnards star. The high RV measurement precision of the VLT-UT2+UVES of 2:65 m s 1 made the following findings possible. (1) The first detection of the change in the RV of a star caused by its space motion (RV secular acceleration). (2) An anti-correlation of the measured RV with the strength of the filling-in of the H line by emission. (3) Very stringent mass upper limits to planetary companions. Using only data from the first 2 years, we obtain a best-fit value for the RV secular acceleration of 5:15 0:89 m s 1 yr 1 .T his agrees within 0:95 with the predicted value of 4:50 m s 1 yr 1 based on the Hipparcos proper motion and parallax combined with the known absolute radial velocity of the star. When the RV data of the last half-year are added the best-fit slope is strongly reduced to 2:97 0:51 m s 1 yr 1 (3:0 away from the predicted value), clearly suggesting the presence of additional RV variability in the star. Part of it can be attributed to stellar activity as we demonstrate by correlating the residual RVs with an index that describes the filling-in of the H line by emission. A correlation coecient of 0:50 indicates that the appearance of active regions causes a blueshift of photospheric absorption lines. Assuming that active regions basically inhibit convection we discuss the possibility that the fundamental (inactive) convection pattern in this M4V star produces a convective redshift which would indicate that the majority of the absorption lines relevant for our RV measurements is formed in a region of convective overshoot. This interpretation could possibly extend a trend indicated in the behaviour of earlier spectral types that exhibit convective blueshift, but with decreasing line asymmetries and blueshifts as one goes from G to K dwarfs. Based on this assumption, we estimate that the variation of the visible plage coverage is about 20%. We also determine upper limits to the projected mass m sin i and to the true mass m of hypothetical planetary companions in circular orbits. For the separation range 0:017 0:98 AU we exclude any planet with m sin i> 0:12 MJupiter and m> 0:86 MJupiter. Throughout the habitable zone around Barnards star, i.e. 0:034 0:082 AU, we exclude planets with m sin i> 7:5 MEarth and m> 3:1 MNeptune.
Astronomy and Astrophysics | 2001
O. Stahl; I. Jankovics; Jozsef Kovacs; B. Wolf; Werner Schmutz; A. Kaufer; Th. Rivinius; Th. Szeifert
We have extensively monitored the Luminous Blue Variable AG Car (HD 94910) spectroscopically. Our data cover the years 1989 to 1999. In this period, the star underwent almost a full S Dor cycle from visual minimum to maximum and back. Over several seasons, up to four months of almost daily spectra are available. Our data cover most of the visual spectral range with a high spectral resolution (= 20 000). This allows us to investigate the variability in many lines on time scales from days to years. The strongest variability occurs on a time scale of years. Qualitatively, the variations can be understood as changes of the eective temperature and radius, which are in phase with the optical light curve. Quantitatively, there are several interesting deviations from this behaviour, however. The Balmer lines show P Cygni proles and have their maximum strength (both in equivalent width and line flux) after the peak of the optical light curve, at the descending branch of the light curve. The line-width during maximum phase is smaller than during minimum, but it has a local maximum close to the peak of the visual light curve. We derive mass-loss rates over the cycle from the H line and nd the highest mass loss rates (log _ M=(M yr 1 ) 3:8, about a factor of ve higher than in the minimum, where we nd log _ M=(M yr 1 ) 4:5) after the visual maximum. Line-splitting is very commonly observed, especially on the rise to maximum and on the descending branch from maximum. The components are very long-lived (years) and are probably unrelated to similar-looking line-splitting events in normal supergiants. Small apparent accelerations of the components are observed. The change in radial velocity could be due to successive narrowing of the components, with the absorption disappearing at small expansion velocities rst. In general, the line- splitting is more likely the result of missing absorption at intermediate velocities than of excess absorption at the velocities of the components. The Hei lines and other lines which form deep in the atmosphere show the most peculiar variations. The Hei lines show a central absorption with variable blue- and red-shifted emission components. Due to the variations of the emission components, the Hei lines can change their line prole from a normal P Cyg prole to an inverse P Cyg-prole or double-peak emission. In addition, very broad (1500 km s 1 ) emission wings are seen at the strongest Hei lines of AG Car. At some phases, a blue-shifted absorption is also present. The central absorption of the Hei lines is blue-shifted before and red-shifted after maximum. Possibly, we directly see the expansion and contraction of the photosphere. If this explanation is correct, the velocity of the continuum-forming layer is not dominated by expansion but is only slightly oscillating around the systemic velocity.
Astronomy and Astrophysics | 2002
A. Korn; S. C. Keller; A. Kaufer; N. Langer; Norbert Przybilla; Otmar Stahl; B. Wolf
We present chemical abundances for four main sequence B stars in the young cluster NGC 2004 in the Large Magellanic Cloud (LMC). Apart from H II regions, unevolved OB-type stars are currently the only accessible source ofpresent-day CNO abundances for the MCs not altered by stellar evolution. Using UVES on the VLT, we obtained spectra of sufficient resolution (R = 20 000) and signal-to-noise (S/N ≥ 100) to derive abundances for a variety of elements (He, C, N, O, Mg and Si) with NLTE line formation. This study doubles the number of main sequence B stars in the LMC with detailed chemical abundances. More importantly and in contrast to previous studies, we find no CNO abundance anomalies brought on by e.g. binary interaction or rotational mixing. Thus, this is the first time that abundances from H II regions in the LMC can sensibly be cross-checked against those from B stars by excluding evolutionary effects. We confirm the H II-region CNO abundances to within the errors, in particular the extraordinarily low nitrogen abundance of e(N) ≃ 7.0. Taken at face value, the nebular carbon abundance is 0.16 dex below the B-star value which could be interpreted in terms of interstellar dust depletion. Oxygen abundances from the two sources agree to within 0.03 dex. In comparison with the Galactic thin disk at MC metallicities, the Magellanic Clouds are clearly nitrogen-poor environments.
Astronomy and Astrophysics | 2006
A. Kaufer; O. Stahl; Raman K. Prinja; D. K. Witherick
We report on the results of an extended optical spectroscopic monitoring campaign on the early-type B supergiant HD64760 (B0.5Ib) designed to probe the deep-seated origin of spatial wind structure in massive stars. This new study is based on high-resolution echelle spectra obtained with the Feros instrument at ESO La Silla. 279 spectra were collected over 10 nights between February 14 and 24, 2003. From the period analysis of the line-profile variability of the photospheric lines we identify three closely spaced periods around 4.810 h and a splitting of +/- 3%. The velocity-phase diagrams of the line-profile variations for the distinct periods reveal characteristic prograde non-radial pulsation patterns of high order corresponding to pulsation modes with l and m in the range 6-10. A detailed modeling of the multi-periodic non-radial pulsations with the Bruce and Kylie pulsation-model codes (Townsend 1997b, MNRAS, 284, 839) favors either three modes with l = -m and l = 8, 6, 8 or m = - 6 and l = 8, 6, 10 with the second case maintaining the closely spaced periods in the co-rotating frame. The pulsation models predict photometric variations of 0.012-0.020 mag consistent with the non-detection of any of the spectroscopic periods by photometry. The three pulsation modes have periods clearly shorter than the characteristic pulsation time scale and show small horizontal velocity fields and hence are identified as p-modes. The beating of the three pulsation modes leads to a retrograde beat pattern with two regions of constructive interference diametrically opposite on the stellar surface and a beat period of 162.8h (6.8 days). This beat pattern is directly observed in the spectroscopic time series of the photospheric lines. The wind-sensitive lines display features of enhanced emission, which appear to follow the maxima of the photospheric beat pattern. The pulsation models predict for the two regions normalized flux amplitudes of A = +0.33, -0.28, sufficiently large to raise spiral co-rotating interaction regions (Cranmer & Owocki 1996, ApJ, 462, 469). We further investigate the observed Ha wind-profile variations with a simple rotating wind model with wind-density modulations to simulate the effect of possible streak lines originating from the localized surface spots created by the NRP beat pattern. It is found that such a simple scenario can explain the time scales and some but not all characteristics of the observed Ha line-profile variations.
Astronomy and Astrophysics | 2012
B. Lemasle; T. J. L. de Boer; V. Hill; Eline Tolstoy; M. J. Irwin; Pascale Jablonka; Kim A. Venn; G. Battaglia; Else Starkenburg; Matthew Shetrone; B. Letarte; P. Francois; Amina Helmi; F. Primas; A. Kaufer; T. Szeifert
Context. Fornax is one of the most massive dwarf spheroidal galaxies in the Local Group. The Fornax field star population is dominated by intermediate age stars but star formation was going on over almost its entire history. It has been proposed that Fornax experienced a minor merger event. Aims. Despite recent progress, only the high metallicity end of Fornax field stars ([Fe/H] > -1.2 dex) has been sampled in larger number via high resolution spectroscopy. We want to better understand the full chemical evolution of this galaxy by better sampling the whole metallicity range, including more metal poor stars. Methods. We use the VLT-FLAMES multi-fibre spectrograph in high-resolution mode to determine the abundances of several a, iron-peak and neutron-capture elements in a sample of 47 individual red giant branch stars in the Fornax dwarf spheroidal galaxy. We combine these abundances with accurate age estimates derived from the age probability distribution from the colour-magnitude diagram of Fornax. Results. Similar to other dwarf spheroidal galaxies, the old, metal-poor stars of Fornax are typically alpha-rich while the young metal-rich stars are a-poor. In the classical scenario of the time delay between Type II (SNe II) and Type Ia Supernovae (SNe la), we confirm that SNe la started to contribute to the chemical enrichment at [Fe/H] between -2.0 and -1.8 dex. We find that the onset of SNe Ia took place between 12-10 Gyr ago. The high values of [Ba/Fe], [La/Fe] reflect the influence of SNe Ia and AGB stars in the abundance pattern of the younger stellar population of Fornax. Conclusions. Our findings of low [alpha/Fe] and enhanced [Eu/Mg] are compatible with an initial mass function that lacks the most massive stars and with star formation that kept going on throughout the whole history of Fornax. We find that massive stars kept enriching the interstellar medium in alpha-elements, although they were not the main contributor to the iron enrichment.