A. Keith Stewart
Mayo Clinic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Keith Stewart.
Nature | 2011
Michael Chapman; Michael S. Lawrence; Jonathan J. Keats; Kristian Cibulskis; Carrie Sougnez; Anna C. Schinzel; Christina L. Harview; Jean Philippe Brunet; Gregory J. Ahmann; Mazhar Adli; Kenneth C. Anderson; Kristin Ardlie; Daniel Auclair; Angela Baker; P. Leif Bergsagel; Bradley E. Bernstein; Yotam Drier; Rafael Fonseca; Stacey B. Gabriel; Craig C. Hofmeister; Sundar Jagannath; Andrzej J. Jakubowiak; Amrita Krishnan; Joan Levy; Ted Liefeld; Sagar Lonial; Scott Mahan; Bunmi Mfuko; Stefano Monti; Louise M. Perkins
Multiple myeloma is an incurable malignancy of plasma cells, and its pathogenesis is poorly understood. Here we report the massively parallel sequencing of 38 tumour genomes and their comparison to matched normal DNAs. Several new and unexpected oncogenic mechanisms were suggested by the pattern of somatic mutation across the data set. These include the mutation of genes involved in protein translation (seen in nearly half of the patients), genes involved in histone methylation, and genes involved in blood coagulation. In addition, a broader than anticipated role of NF-κB signalling was indicated by mutations in 11 members of the NF-κB pathway. Of potential immediate clinical relevance, activating mutations of the kinase BRAF were observed in 4% of patients, suggesting the evaluation of BRAF inhibitors in multiple myeloma clinical trials. These results indicate that cancer genome sequencing of large collections of samples will yield new insights into cancer not anticipated by existing knowledge.
Cancer Research | 2004
Rafael Fonseca; Bart Barlogie; Régis Bataille; Christian Bastard; P. Leif Bergsagel; Marta Chesi; Faith E. Davies; Johannes Drach; Philip R. Greipp; Ilan R. Kirsch; W. Michael Kuehl; Jesus M. Hernandez; Stephane Minvielle; Linda M. Pilarski; John D. Shaughnessy; A. Keith Stewart; Hervé Avet-Loiseau
Much has been learned regarding the biology and clinical implications of genetic abnormalities in multiple myeloma. Because of recent advances in the field, an International Workshop was held in Paris in February of 2003. This summary describes the consensus recommendations arising from that meeting with special emphasis on novel genetic observations. For instance, it is increasingly clear that translocations involving the immunoglobulin heavy-chain locus are important for the pathogenesis of one-half of patients. As a corollary, it also clear that the remaining patients, lacking IgH translocations, have hyperdiploidy as the hallmark of their disease. Several important genetic markers are associated with a shortened survival such as chromosome 13 monosomy, hypodiploidy, and others. The events leading the transformation of the monoclonal gammopathy of undetermined significance (MGUS) to myeloma are still unclear. One of the few differential genetic lesions between myeloma and MGUS is the presence of ras mutations in the latter. Gene expression platforms are capable of detecting many of the genetic aberrations found in the clonal cells of myeloma. Areas in need of further study were identified. The study of the genetic aberrations will likely form the platform for targeted therapy for the disease.
The New England Journal of Medicine | 2015
A. Keith Stewart; S. Vincent Rajkumar; Meletios A. Dimopoulos; Tamas Masszi; Ivan Spicka; Albert Oriol; Roman Hájek; Laura Rosiñol; David Siegel; Georgi Mihaylov; Vesselina Goranova-Marinova; Peter Rajnics; Aleksandr Suvorov; Ruben Niesvizky; Andrzej J. Jakubowiak; Jesús F. San-Miguel; Heinz Ludwig; Michael Wang; Vladimír Maisnar; Jiri Minarik; William Bensinger; Maria Victoria Mateos; Dina Ben-Yehuda; Vishal Kukreti; Naseem Zojwalla; Margaret Tonda; Xinqun Yang; Biao Xing; Philippe Moreau; Antonio Palumbo
BACKGROUND Lenalidomide plus dexamethasone is a reference treatment for relapsed multiple myeloma. The combination of the proteasome inhibitor carfilzomib with lenalidomide and dexamethasone has shown efficacy in a phase 1 and 2 study in relapsed multiple myeloma. METHODS We randomly assigned 792 patients with relapsed multiple myeloma to carfilzomib with lenalidomide and dexamethasone (carfilzomib group) or lenalidomide and dexamethasone alone (control group). The primary end point was progression-free survival. RESULTS Progression-free survival was significantly improved with carfilzomib (median, 26.3 months, vs. 17.6 months in the control group; hazard ratio for progression or death, 0.69; 95% confidence interval [CI], 0.57 to 0.83; P=0.0001). The median overall survival was not reached in either group at the interim analysis. The Kaplan-Meier 24-month overall survival rates were 73.3% and 65.0% in the carfilzomib and control groups, respectively (hazard ratio for death, 0.79; 95% CI, 0.63 to 0.99; P=0.04). The rates of overall response (partial response or better) were 87.1% and 66.7% in the carfilzomib and control groups, respectively (P<0.001; 31.8% and 9.3% of patients in the respective groups had a complete response or better; 14.1% and 4.3% had a stringent complete response). Adverse events of grade 3 or higher were reported in 83.7% and 80.7% of patients in the carfilzomib and control groups, respectively; 15.3% and 17.7% of patients discontinued treatment owing to adverse events. Patients in the carfilzomib group reported superior health-related quality of life. CONCLUSIONS In patients with relapsed multiple myeloma, the addition of carfilzomib to lenalidomide and dexamethasone resulted in significantly improved progression-free survival at the interim analysis and had a favorable risk-benefit profile. (Funded by Onyx Pharmaceuticals; ClinicalTrials.gov number, NCT01080391.).
Blood | 2012
David Siegel; Thomas G. Martin; Michael Wang; Ravi Vij; Andrzej J. Jakubowiak; Sagar Lonial; Suzanne Trudel; Vishal Kukreti; Nizar J. Bahlis; Melissa Alsina; Asher Chanan-Khan; Francis Buadi; Frederic J. Reu; George Somlo; Jeffrey A. Zonder; Kevin W. Song; A. Keith Stewart; Edward A. Stadtmauer; Lori Kunkel; Sandra Wear; Alvin Wong; Robert Z. Orlowski; Sundar Jagannath
Carfilzomib is a next-generation, selective proteasome inhibitor being evaluated for the treatment of relapsed and refractory multiple myeloma. In this open-label, single-arm phase 2 study (PX-171-003-A1), patients received single-agent carfilzomib 20 mg/m(2) intravenously twice weekly for 3 of 4 weeks in cycle 1, then 27 mg/m(2) for ≤ 12 cycles. The primary endpoint was overall response rate (≥ partial response). Secondary endpoints included clinical benefit response rate (≥ minimal response), duration of response, progression-free survival, overall survival, and safety. A total of 266 patients were evaluable for safety, 257 for efficacy; 95% were refractory to their last therapy; 80% were refractory or intolerant to both bortezomib and lenalidomide. Patients had median of 5 prior lines of therapy, including bortezomib, lenalidomide, and thalidomide. Overall response rate was 23.7% with median duration of response of 7.8 months. Median overall survival was 15.6 months. Adverse events (AEs) were manageable without cumulative toxicities. Common AEs were fatigue (49%), anemia (46%), nausea (45%), and thrombocytopenia (39%). Thirty-three patients (12.4%) experienced peripheral neuropathy, primarily grades 1 or 2. Thirty-three patients (12.4%) withdrew because of an AE. Durable responses and an acceptable tolerability profile in this heavily pretreated population demonstrate the potential of carfilzomib to offer meaningful clinical benefit. This trial was registered at www.clinicaltrials.gov as #NCT00511238.
Cancer Cell | 2014
Jens Lohr; Petar Stojanov; Scott L. Carter; Peter Cruz-Gordillo; Michael S. Lawrence; Daniel Auclair; Carrie Sougnez; Birgit Knoechel; Joshua Gould; Gordon Saksena; Kristian Cibulskis; Aaron McKenna; Michael Chapman; Ravid Straussman; Joan Levy; Louise M. Perkins; Jonathan J. Keats; Steven E. Schumacher; Mara Rosenberg; Kenneth C. Anderson; Paul G. Richardson; Amrita Krishnan; Sagar Lonial; Jonathan L. Kaufman; David Siegel; David H. Vesole; Vivek Roy; Candido E. Rivera; S. Vincent Rajkumar; Shaji Kumar
We performed massively parallel sequencing of paired tumor/normal samples from 203 multiple myeloma (MM) patients and identified significantly mutated genes and copy number alterations and discovered putative tumor suppressor genes by determining homozygous deletions and loss of heterozygosity. We observed frequent mutations in KRAS (particularly in previously treated patients), NRAS, BRAF, FAM46C, TP53, and DIS3 (particularly in nonhyperdiploid MM). Mutations were often present in subclonal populations, and multiple mutations within the same pathway (e.g., KRAS, NRAS, and BRAF) were observed in the same patient. In vitro modeling predicts only partial treatment efficacy of targeting subclonal mutations, and even growth promotion of nonmutated subclones in some cases. These results emphasize the importance of heterogeneity analysis for treatment decisions.
Blood | 2012
Jonathan J. Keats; Marta Chesi; Jan B. Egan; Victoria Garbitt; Stephen Palmer; Esteban Braggio; Scott Van Wier; Patrick R. Blackburn; Angela Baker; Angela Dispenzieri; Shaji Kumar; S. Vincent Rajkumar; John D. Carpten; Michael T. Barrett; Rafael Fonseca; A. Keith Stewart; P. Leif Bergsagel
Emerging evidence indicates that tumors can follow several evolutionary paths over a patients disease course. With the use of serial genomic analysis of samples collected at different points during the disease course of 28 patients with multiple myeloma, we found that the genomes of standard-risk patients show few changes over time, whereas those of cytogenetically high-risk patients show significantly more changes over time. The results indicate the existence of 3 temporal tumor types, which can either be genetically stable, linearly evolving, or heterogeneous clonal mixtures with shifting predominant clones. A detailed analysis of one high-risk patient sampled at 7 time points over the entire disease course identified 2 competing subclones that alternate in a back and forth manner for dominance with therapy until one clone underwent a dramatic linear evolution. With the use of the Vk*MYC genetically engineered mouse model of myeloma we modeled this competition between subclones for predominance occurring spontaneously and with therapeutic selection.
Mayo Clinic Proceedings | 2009
Shaji Kumar; Joseph R. Mikhael; Francis Buadi; David Dingli; Angela Dispenzieri; Rafael Fonseca; Morie A. Gertz; Philip R. Greipp; Suzanne R. Hayman; Robert A. Kyle; Martha Q. Lacy; John A. Lust; Craig B. Reeder; Vivek Roy; Stephen J. Russell; Kristen Detweiler Short; A. Keith Stewart; Thomas E. Witzig; Steven R. Zeldenrust; Robert J. Dalton; S. Vincent Rajkumar; P. Leif Bergsagel
Multiple myeloma is a malignant plasma cell neoplasm that affects more than 20,000 people each year and is the second most common hematologic malignancy. It is part of a spectrum of monoclonal plasma cell disorders, many of which do not require active therapy. During the past decade, considerable progress has been made in our understanding of the disease process and factors that influence outcome, along with development of new drugs that are highly effective in controlling the disease and prolonging survival without compromising quality of life. Identification of well-defined and reproducible prognostic factors and introduction of new therapies with unique modes of action and impact on disease outcome have for the first time opened up the opportunity to develop risk-adapted strategies for managing this disease. Although these risk-adapted strategies have not been prospectively validated, enough evidence can be gathered from existing randomized trials, subgroup analyses, and retrospective studies to develop a working framework. This set of recommendations represents such an effort-the development of a set of consensus guidelines by a group of experts to manage patients with newly diagnosed disease based on an interpretation of the best available evidence.
Blood | 2011
Yuan Xiao Zhu; Esteban Braggio; Chang Xin Shi; Laura Bruins; Jessica Schmidt; Scott Van Wier; Xiu Bao Chang; Chad C. Bjorklund; Rafael Fonseca; P. Leif Bergsagel; Robert Z. Orlowski; A. Keith Stewart
The precise molecular mechanism of action and targets through which thalidomide and related immunomodulatory drugs (IMiDs) exert their antitumor effects remains unclear. We investigated the role of cereblon (CRBN), a primary teratogenic target of thalidomide, in the antimyeloma activity of IMiDs. CRBN depletion is initially cytotoxic to human myeloma cells, but surviving cells with stable CRBN depletion become highly resistant to both lenalidomide and pomalidomide, but not to the unrelated drugs bortezomib, dexamethasone, and melphalan. Acquired deletion of CRBN was found to be the primary genetic event differentiating isogenic MM1.S cell lines cultured to be sensitive or resistant to lenalidomide and pomalidomide. Gene expression changes induced by lenalidomide were dramatically suppressed in the presence of CRBN depletion, further demonstrating that CRBN is required for lenalidomide activity. Downstream targets of CRBN include interferon regulatory factor 4 (IRF4) previously reported to also be a target of lenalidomide. Patients exposed to, and putatively resistant to, lenalidomide had lower CRBN levels in paired samples before and after therapy. In summary, CRBN is an essential requirement for IMiD activity and a possible biomarker for the clinical assessment of antimyeloma efficacy.
Blood | 2012
Jan B. Egan; Chang Xin Shi; Waibhav Tembe; Alexis Christoforides; Ahmet Kurdoglu; Shripad Sinari; Sumit Middha; Yan W. Asmann; Jessica Schmidt; Esteban Braggio; Jonathan J. Keats; Rafael Fonseca; P. Leif Bergsagel; David Craig; John D. Carpten; A. Keith Stewart
The longitudinal evolution of a myeloma genome from diagnosis to plasma cell leukemia has not previously been reported. We used whole-genome sequencing (WGS) on 4 purified tumor samples and patient germline DNA drawn over a 5-year period in a t(4;14) multiple myeloma patient. Tumor samples were acquired at diagnosis, first relapse, second relapse, and end-stage secondary plasma cell leukemia (sPCL). In addition to the t(4;14), all tumor time points also shared 10 common single-nucleotide variants (SNVs) on WGS comprising shared initiating events. Interestingly, we observed genomic sequence variants that waxed and waned with time in progressive tumors, suggesting the presence of multiple independent, yet related, clones at diagnosis that rose and fell in dominance. Five newly acquired SNVs, including truncating mutations of RB1 and ZKSCAN3, were observed only in the final sPCL sample suggesting leukemic transformation events. This longitudinal WGS characterization of the natural history of a high-risk myeloma patient demonstrated tumor heterogeneity at diagnosis with shifting dominance of tumor clones over time and has also identified potential mutations contributing to myelomagenesis as well as transformation from myeloma to overt extramedullary disease such as sPCL.
Blood | 2012
Shaji Kumar; Ian W. Flinn; Paul G. Richardson; Parameswaran Hari; Natalie S. Callander; Stephen J. Noga; A. Keith Stewart; Francesco Turturro; Robert M. Rifkin; Jeffrey L. Wolf; Jose Estevam; George Mulligan; Hongliang Shi; Iain J. Webb; S. Vincent Rajkumar
Combinations of bortezomib (V) and dexamethasone (D) with either lenalidomide (R) or cyclophosphamide (C) have shown significant efficacy. This randomized phase 2 trial evaluated VDC, VDR, and VDCR in previously untreated multiple myeloma (MM). Patients received V 1.3 mg/m2 (days 1, 4, 8, 11) and D 40 mg (days 1, 8, 15), with either C 500 mg/m2 (days 1, 8) and R 15 mg (days 1-14; VDCR), R 25 mg (days 1-14; VDR), C 500 mg/m2 (days 1, 8; VDC) or C 500 mg/m2 (days 1, 8, 15; VDC-mod) in 3-week cycles (maximum 8 cycles), followed by maintenance with V 1.3 mg/m2 (days 1, 8, 15, 22) for four 6-week cycles (all arms)≥very good partial response was seen in 58%, 51%, 41%, and 53% (complete response rate of 25%, 24%, 22%, and 47%) of patients (VDCR, VDR, VCD, and VCD-mod, respectively); the corresponding 1-year progression-free survival was 86%, 83%, 93%, and 100%, respectively. Common adverse events included hematologic toxicities, peripheral neuropathy, fatigue, and gastrointestinal disturbances. All regimens were highly active and well tolerated in previously untreated MM, and, based on this trial, VDR and VCD-mod are preferred for clinical practice and further comparative testing. No substantial advantage was noted with VDCR over the 3-drug combinations. This trial is registered at www.clinicaltrials.gov (NCT00507442).