Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Khaki Sedigh is active.

Publication


Featured researches published by A. Khaki Sedigh.


International Journal of Control | 2005

Reconfigurable control system design using eigenstructure assignment: static, dynamic and robust approaches

A. Esna Ashari; A. Khaki Sedigh; Mohammad Javad Yazdanpanah

New approaches to design static and dynamical reconfigurable control systems are proposed based on the eigenstructure assignment techniques. The methods can recover the nominal closed-loop performance after a fault occurrence in the system, in the state and output feedback designs. These methods are capable of dealing with order-reduction problems that may occur in an after-fault system. The problem of robust reconfigurable controller design, which makes the after-fault closed-loop system insensitive as much as possible, to the parameter uncertainties of the after-fault model is considered. Steady state response of the after-fault system under the unit step input is recovered by the means of a reconfigurable feed-forward compensator. The methods guarantee the stability of the reconfigured closed-loop system in the case of output feedback. For the faulty situations, in which the order of the pre-fault and after-fault closed-loop systems are the same, sufficient regional pole assignment conditions for the reconfigured system are derived. Finally, simulation results are provided to show the effectiveness of the proposed methods for two aircraft models.


Systems & Control Letters | 2002

Output feedback decentralized control of large-scale systems using weighted sensitivity functions minimization

B. Labibi; Boris Lohmann; A. Khaki Sedigh; P. Jabedar Maralani

This paper considers the problem of achieving stability and desired dynamical transient behavior for linear large-scale systems, by decentralized control. It can be done by making the effects of the interconnections between the subsystems arbitrarily small. Sufficient conditions for stability and diagonal dominance of the closed-loop system are introduced. These conditions are in terms of decentralized subsystems and directly make a constructive H∞ control design possible. A mixed H∞ pole region placement is suggested, such that by assigning the closed-loop eigenvalues of the isolated subsystems appropriately, the eigenvalues of the overall closed-loop system are assigned in desirable range. The designs are illustrated by an example.


International Journal of Systems Science | 2000

Optimal design of robust quantitative feedback controllers using random optimization techniques

A. Khaki Sedigh; Caro Lucas

Quantitative design of robust control systems proposes a transparent and practical controller design methodology for uncertain single-input single-output and multivariable plants. There are several steps involved in the design of such controllers. The main steps involved in the design are template generation, loop shaping and pre-filter design. In the case of multivariable uncertain plants, manipulation of tolerance bounds within the available freedom, for both sequential and non-sequential designs, consideration of template size of next step in sequential design, and the appropriate selection of the nominal transfer function matrices in the equivalent disturbance attenuation design are also crucial steps. In all the quantitative designs, a time-consuming trial-and-error procedure is adapted and a successful compromise between various design requirements is very much dependent on the designer experience and expertise. In this paper, these steps are reformulated in terms of different cost functions, and it is shown that the optimization of these cost functions leads to an optimal design of quantitative controllers, for both single input single output and multivariable plants. This proposes a nonlinear constrained optimization problem that can be easily solved using any of the random optimization techniques. Simulation results are used to show the effectiveness of the proposed method.


International Journal of Systems Science | 2003

Robust decentralized stabilization of large-scale systems via eigenstructure assignment

Batool Labibi; Boris Lohmann; A. Khaki Sedigh; P. Jabedar Maralani

In this paper, the problem of achieving robust stability for linear large-scale systems by decentralized feedback is considered. Sufficient conditions for stability of closed-loop system are introduced. By appropriately assigning the eigenstructure of each isolated subsystem via output feedback or state feedback, these conditions are satisfied. Based on the eigenstructure assignment result and the matrix eigenvalue sensitivity theory, a method for decentralized robust stabilization is presented.


International Journal of Systems Science | 2003

Robust decentralized control of large-scale systems via H ∞ theory and using descriptor system representation

Batool Labibi; Boris Lohmann; A. Khaki Sedigh; P. Jabedar Maralani

In this paper, a method for design of linear decentralized robust controllers for a class of uncertain large-scale systems in general form is presented. For a given large-scale system, an equivalent descriptor system in input–output decentralized form is defined. Using this representation, closed-loop diagonal dominance sufficient conditions are derived. It is shown that by appropriately minimizing the weighted sensitivity function of each isolated subsystem, these conditions are achieved. Solving the appropriately defined H∞ local problem for each isolated uncertain subsystem, the interactions between the subsystems are reduced, and the overall stability and robust performance are achieved in spite of uncertainties. The designs are illustrated by a practical example.


international symposium on intelligent systems and informatics | 2010

Traffic state variables estimating and predicting with neural network via extended Kalman filter algorithm with estimated parameters as offline

J. Abdi; Behzad Moshiri; E. Jafari; A. Khaki Sedigh

Developing mathematical models and estimating their parameters are fundamental issues for studying dynamic behaviors of traffic systems. METANET model is one of the most applicable models in traffic modeling in which the parameters have plenty of effects on the model behavior. In this paper, the effects of the model parameters on the model behavior and the estimation quality of the system states in the undetermined parameters are described. The extended Kalman filtering (EKF) algorithm instead of the error back-propagation (BP) algorithm is used to train artificial neural networks (ANNs) for dynamical traffic networks modeling. The basic idea is to prevent over fitting discrepancy occurrence caused by outliers in the training samples by the EKF. Numerical simulations show that the EKF algorithm is greater to the BP algorithm.


international conference on control, automation and systems | 2010

Robust control of a pH neutralization process plant using QFT

R. Shabani; A. Khaki Sedigh; Karim Salahshoor

Inherent pH process nonlinearity and time-varying characteristics impose a highly challenging control problem. This paper presents an incorporation of offline process model identification and a QFT control methodology to develop a robust control scheme for a pH neutralization process plant on the basis of SISO QFT bounds. The obtained simulation results indicate the efficiency of the proposed control scheme to accomplish both the regulatory and servo tracking objectives.


conference on decision and control | 2009

Design of decentralized supervisory based switching QFT controller for uncertain multivariable plants

Omid Namaki-Shoushtari; A. Khaki Sedigh

In this paper, design of decentralized switching control for uncertain multivariable plants based on the Quantitative Feedback Theory (QFT) is considered. In the proposed strategy, the uncertainty region is divided into smaller regions with a nominal model. It is assumed that a MIMO-QFT controller exists for robust stability and performance of the individual uncertain sets. The proposed control structure is made up by these local controllers, which commute among themselves in accordance with the decision of a high level decision maker called the supervisor. The supervisor makes the decision by comparing the local models behaviors with the one of the plant and selects the controller corresponding to the best fitted model. A hysteresis switching logic is used to slow down switching to guarantee the overall closed loop stability. It is shown that this strategy provides a stable and robust adaptive controller to deal with complex multivariable plants with input-output pairing changes during the plant operation, which can facilitate the development of a reconfigurable decentralized control. Simulation results are employed to show the effectiveness of the proposed method.


asian control conference | 2013

Performance evaluation of non-minimum phase linear control systems with fractional order partial pole-zero cancellation

N. Khalili Zadeh Mahani; A. Khaki Sedigh; F. Merrikh Bayat

It has been known that, real right half plane (RHP) zeros imply serious limitations on the performance of nonminimum phase systems. Feedback cannot remove these limitations, mainly because RHP zeros cannot be cancelled by unstable poles of the controller since such a cancellation leads to internal instability. Hence, the idea of using fractional order systems in partial cancellation of the RHP zeros without leading to internal instability is studied. In this paper, the partial cancellation of RHP zeros with RHP poles is proposed using the fractional calculus approach. It is shown that undershoot and settling time of the compensated system is improved. Using suitable optimum criterion, it is shown that the performance of closed loop system can be relatively improved. Simulation results are used to show the effectiveness of the proposed methodology.


international conference on advanced computer control | 2010

Input-output pairing based on the control performance assessment index

S. Choobkar; A. Khaki Sedigh; Alireza Fatehi

In this paper, the relation between Input-output pairing and minimum variance (MV) index as a performance index is studied. Control structure selection or the input-output pairing problem is a key step in designing decentralized controllers for multivariable. The Relative Gain Array (RGA) is an important tool for the control structure selection procedure. In this study, RGA is calculated and decentralized minimum variance controllers are designed for each feasible pairing. The MV performance index will be calculated from the closed loop transfer function using the markov parameters. It is shown that the value of the MV index can propose an input-output pairing that leads to minimum output variance. Several simulation results are provided to show the main points of the paper.

Collaboration


Dive into the A. Khaki Sedigh's collaboration.

Researchain Logo
Decentralizing Knowledge