Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A.L.F. Hellwing is active.

Publication


Featured researches published by A.L.F. Hellwing.


Animal | 2012

Methods for Measuring and Estimating Methane Emission from Ruminants

Ida M.L.D. Storm; A.L.F. Hellwing; Nicolaj I. Nielsen; Jørgen Steen Madsen

Simple Summary Knowledge about methods used in quantification of greenhouse gasses is currently needed due to international commitments to reduce the emissions. In the agricultural sector one important task is to reduce enteric methane emissions from ruminants. Different methods for quantifying these emissions are presently being used and others are under development, all with different conditions for application. For scientist and other persons working with the topic it is very important to understand the advantages and disadvantage of the different methods in use. This paper gives a brief introduction to existing methods but also a description of newer methods and model-based techniques. Abstract This paper is a brief introduction to the different methods used to quantify the enteric methane emission from ruminants. A thorough knowledge of the advantages and disadvantages of these methods is very important in order to plan experiments, understand and interpret experimental results, and compare them with other studies. The aim of the paper is to describe the principles, advantages and disadvantages of different methods used to quantify the enteric methane emission from ruminants. The best-known methods: Chambers/respiration chambers, SF6 technique and in vitro gas production technique and the newer CO2 methods are described. Model estimations, which are used to calculate national budget and single cow enteric emission from intake and diet composition, are also discussed. Other methods under development such as the micrometeorological technique, combined feeder and CH4 analyzer and proxy methods are briefly mentioned. Methods of choice for estimating enteric methane emission depend on aim, equipment, knowledge, time and money available, but interpretation of results obtained with a given method can be improved if knowledge about the disadvantages and advantages are used in the planning of experiments.


Journal of Dairy Science | 2012

Technical note: test of a low-cost and animal-friendly system for measuring methane emissions from dairy cows.

A.L.F. Hellwing; P. Lund; M.R. Weisbjerg; M. Brask

Methane is a greenhouse gas with a significant anthropogenic contribution from cattle production. A demand exists for techniques that facilitate evaluation of mitigation strategies for dairy cows. Therefore, a low-cost system facilitating the highest possible animal welfare was constructed and validated. The system uses the same principles as systems for open-circuit indirect calorimetry, but to lower the costs, the chamber construction and air-conditioning system were simpler than described for other open-circuit systems. To secure the highest possible animal welfare, the system is located in the cows daily environment. The system consists of 4 transparent polycarbonate chambers placed in a square so that the cows are facing each other. The chamber dimensions are 183 (width), 382 (length), and 245 cm (height) with a volume of 17 m(3). Flow and concentrations of O(2), CO(2), CH(4), and H(2) are measured continuously in the outlet. Flow is measured with a mass flow meter, O(2) with a paramagnetic sensor, CO(2) and CH(4) with infrared sensors, and H(2) with an electrochemical sensor. Chamber inlet is placed in the barn and background concentrations may differ between chambers, but delta values between background and outlet concentrations for all chambers were within instrument tolerance. Average recovery rates of CO(2) and CH(4) were (mean ± SD) 101 ± 4 and 99 ± 7%, respectively. This is within the expected tolerance of the whole system (gas sensors and flow meters). Feed dry matter intakes were not affected by confining the animals in chambers, as dry matter intake before and during chamber stay were similar. It was concluded that the system delivers reliable values, and the transparent construction in combination with the location in the barn environment prevent negative impact on animal welfare and, thereby, data quality.


Journal of Dairy Science | 2013

Methane production and digestion of different physical forms of rapeseed as fat supplements in dairy cows

M. Brask; P. Lund; M.R. Weisbjerg; A.L.F. Hellwing; Morten Poulsen; M.K. Larsen

The purpose of this experiment was to study the effect of the physical form of rapeseed fat on methane (CH4) mitigation properties, feed digestion, and rumen fermentation. Four lactating ruminal-, duodenal-, and ileal-cannulated Danish Holstein dairy cows (143 d in milk, milk yield of 34.3 kg) were submitted to a 4×4 Latin square design with 4 rations: 1 control with rapeseed meal (low-fat, CON) and 3 fat-supplemented rations with either rapeseed cake (RSC), whole cracked rapeseed (WCR), or rapeseed oil (RSO). Dietary fat concentrations were 3.5 in CON, 5.5 in RSC, 6.2 in WCR, and 6.5% in RSO. The amount of fat-free rapeseed was kept constant for all rations. The forage consisted of corn silage and grass silage and the forage to concentrate ratio was 50:50 on a dry matter basis. Diurnal samples of duodenal and ileal digesta and feces were compiled. The methane production was measured for 4 d in open-circuit respiration chambers. Additional fat reduced the CH4 production per kilogram of dry matter intake and as a proportion of the gross energy intake by 11 and 14%, respectively. Neither the total tract nor the rumen digestibility of organic matter (OM) or neutral detergent fiber were significantly affected by the treatment. Relating the CH4 production to the total-tract digested OM showed a tendency to decrease CH4 per kilogram of digested OM for fat-supplemented rations versus CON. The acetate to propionate ratio was not affected for RSC and WCR but was increased for RSO compared with CON. The rumen ammonia concentration was not affected by the ration. The milk and energy-corrected milk yields were unaffected by the fat supplementation. In conclusion, rapeseed is an appropriate fat source to reduce the enteric CH4 production without affecting neutral detergent fiber digestion or milk production. The physical form of fat did not influence the CH4-reducing effect of rapeseed fat. However, differences in the volatile fatty acid pattern indicate that different mechanisms may be involved.


Journal of Dairy Science | 2016

Effect of dietary nitrate level on enteric methane production, hydrogen emission, rumen fermentation, and nutrient digestibility in dairy cows

D.W. Olijhoek; A.L.F. Hellwing; M. Brask; M.R. Weisbjerg; Ole Højberg; M.K. Larsen; J. Dijkstra; E.J. Erlandsen; P. Lund

Nitrate may lower methane production in ruminants by competing with methanogenesis for available hydrogen in the rumen. This study evaluated the effect of 4 levels of dietary nitrate addition on enteric methane production, hydrogen emission, feed intake, rumen fermentation, nutrient digestibility, microbial protein synthesis, and blood methemoglobin. In a 4×4 Latin square design 4 lactating Danish Holstein dairy cows fitted with rumen, duodenal, and ileal cannulas were assigned to 4 calcium ammonium nitrate addition levels: control, low, medium, and high [0, 5.3, 13.6, and 21.1g of nitrate/kg of dry matter (DM), respectively]. Diets were made isonitrogenous by replacing urea. Cows were fed ad libitum and, after a 6-d period of gradual introduction of nitrate, adapted to the corn-silage-based total mixed ration (forage:concentrate ratio 50:50 on DM basis) for 16d before sampling. Digesta content from duodenum, ileum, and feces, and rumen liquid were collected, after which methane production and hydrogen emissions were measured in respiration chambers. Methane production [L/kg of dry matter intake (DMI)] linearly decreased with increasing nitrate concentrations compared with the control, corresponding to a reduction of 6, 13, and 23% for the low, medium, and high diets, respectively. Methane production was lowered with apparent efficiencies (measured methane reduction relative to potential methane reduction) of 82.3, 71.9, and 79.4% for the low, medium, and high diets, respectively. Addition of nitrate increased hydrogen emissions (L/kg of DMI) quadratically by a factor of 2.5, 3.4, and 3.0 (as L/kg of DMI) for the low, medium, and high diets, respectively, compared with the control. Blood methemoglobin levels and nitrate concentrations in milk and urine increased with increasing nitrate intake, but did not constitute a threat for animal health and human food safety. Microbial crude protein synthesis and efficiency were unaffected. Total volatile fatty acid concentration and molar proportions of acetate, butyrate, and propionate were unaffected, whereas molar proportions of formate increased. Milk yield, milk composition, DMI and digestibility of DM, organic matter, crude protein, and neutral detergent fiber in rumen, small intestine, hindgut, and total tract were unaffected by addition of nitrate. In conclusion, nitrate lowered methane production linearly with minor effects on rumen fermentation and no effects on nutrient digestibility.


Journal of Environmental Quality | 2015

Dietary Nitrate for Methane Mitigation Leads to Nitrous Oxide Emissions from Dairy Cows

Søren O. Petersen; A.L.F. Hellwing; M. Brask; Ole Højberg; Morten Poulsen; Zhou Zhu; Khagendra Raj Baral; P. Lund

Nitrate supplements to cattle diets can reduce enteric CH emissions. However, if NO metabolism stimulates NO emissions, the effectiveness of dietary NO for CH mitigation will be reduced. We quantified NO emissions as part of a dairy cow feeding experiment in which urea was substituted in nearly iso-N diets with 0, 5, 14 or 21 g NO kg dry matter (DM). The feeding experiment was a Latin square with repetition of Period 1. Each period lasted 4 wk, with CH emission measurements in Week 4 using respiration chambers. During Period 3, NO concentrations in chamber outlet air were monitored semicontinuously during 48 h. High, but fluctuating, NO concentrations were seen at the two highest NO levels (up to between 2 and 5 μL L), and dynamics were linked with recent feed intake. In Periods 4 and 5, NO concentrations and feed intake were determined from all four respiration chambers during two 7-h periods. Emissions of NO coincided with feed intake, again with NO concentrations in the microliter per liter range at the two highest NO intake levels. Neither feed nor excretion of NO via urine were significant sources of NO, indicating that emissions came from the animals. Leakages due to rumen fistulation could also not account for NO emissions. The possibility that NO is produced in the oral cavity is discussed. Nitrous oxide emission factors ranged between 0.7 and 1.0% except in one case at 21 g NO kg DM, where it was 3.4%. When accounting for NO emissions at the highest NO intake level, the overall GHG mitigation effect in two different animal-diet combinations changed from -47 to -40%, and from -19 to -17%, respectively, due to NO emissions.


Animal | 2015

Methane production and diurnal variation measured in dairy cows and predicted from fermentation pattern and nutrient or carbon flow

M. Brask; M.R. Weisbjerg; A.L.F. Hellwing; A. Bannink; P. Lund

Many feeding trials have been conducted to quantify enteric methane (CH(4)) production in ruminants. Although a relationship between diet composition, rumen fermentation and CH(4) production is generally accepted, the efforts to quantify this relationship within the same experiment remain scarce. In the present study, a data set was compiled from the results of three intensive respiration chamber trials with lactating rumen and intestinal fistulated Holstein cows, including measurements of rumen and intestinal digestion, rumen fermentation parameters and CH(4) production. Two approaches were used to calculate CH(4) from observations: (1) a rumen organic matter (OM) balance was derived from OM intake and duodenal organic matter flow (DOM) distinguishing various nutrients and (2) a rumen carbon balance was derived from carbon intake and duodenal carbon flow (DCARB). Duodenal flow was corrected for endogenous matter, and contribution of fermentation in the large intestine was accounted for. Hydrogen (H(2)) arising from fermentation was calculated using the fermentation pattern measured in rumen fluid. CH(4) was calculated from H(2) production corrected for H(2) use with biohydrogenation of fatty acids. The DOM model overestimated CH(4)/kg dry matter intake (DMI) by 6.1% (R(2)=0.36) and the DCARB model underestimated CH(4)/kg DMI by 0.4% (R(2)=0.43). A stepwise regression of the difference between measured and calculated daily CH(4) production was conducted to examine explanations for the deviance. Dietary carbohydrate composition and rumen carbohydrate digestion were the main sources of inaccuracies for both models. Furthermore, differences were related to rumen ammonia concentration with the DOM model and to rumen pH and dietary fat with the DCARB model. Adding these parameters to the models and performing a multiple regression against observed daily CH(4) production resulted in R 2 of 0.66 and 0.72 for DOM and DCARB models, respectively. The diurnal pattern of CH(4) production followed that of rumen volatile fatty acid (VFA) concentration and the CH(4) to CO(2) production ratio, but was inverse to rumen pH and the rumen hydrogen balance calculated from 4×(acetate+butyrate)/2×(propionate+valerate). In conclusion, the amount of feed fermented was the most important factor determining variations in CH(4) production between animals, diets and during the day. Interactions between feed components, VFA absorption rates and variation between animals seemed to be factors that were complicating the accurate prediction of CH(4). Using a ruminal carbon balance appeared to predict CH(4) production just as well as calculations based on rumen digestion of individual nutrients.


Acta Agriculturae Scandinavica Section A-animal Science | 2013

A prediction equation for enteric methane emission from dairy cows for use in NorFor

N. I. Nielsen; H. Volden; M. Åkerlind; M. Brask; A.L.F. Hellwing; T. M. Storlien; J. Bertilsson

Abstract A data-set with 47 treatment means (N = 211) was compiled from research institutions in Denmark, Norway, and Sweden in order to develop a prediction equation for enteric methane (CH4) emissions from dairy cows. The aim was to implement the equation in the Nordic feed evaluation system NorFor. The equation should therefore be based on input variables available in NorFor. The best equation to predict CH4 (MJ/d) was based on dry matter intake (DMI, kg/d), and content of (g/kg DM) fatty acids (FA), crude protein (CP), and neutral detergent fiber (NDF). The equation was CH4 = 1.36 (±0.10) × DMI – 0.125 (±0.039) × FA – 0.02 (±0.012) × CP + 0.017 (±0.005) × NDF (RMSE = 3.00 MJ CH4/d; CV = 13.8%; R2 = 0.77), where RMSE is the root mean square error and CV is the coefficient of variation. However, CP was on the borderline of being significant and did not quantitatively explain much variation in CH4 emission. Based on the present research, we concluded, therefore, that the equation CH4 = 1.23 (±0.08) × DMI – 0.145 (±0.039) × FA + 0.012 (±0.005) × NDF (RMSE = 3.10 MJ CH4/d; CV = 14.3%; R2 = 0.75) is most suited for being implemented in NorFor. However, the ability of the proposed equation to predict enteric methane emissions is uncertain until evaluated on an independent data-set.


Acta Agriculturae Scandinavica Section A-animal Science | 2012

Can rapeseed lower methane emission from heifers

A.L.F. Hellwing; Martin Tang Sørensen; M.R. Weisbjerg; Mogens Vestergaard; P. Lund

Abstract Twelve heifers were assigned to either a control diet (CON) with 26 g fat per kg dry matter (DM) or a supplemented diet (FAT) with crushed rapeseed with 53 g fat per kg DM. Methane (CH4) emission was measured by open-circuit indirect calorimetry for four days when the heifers weighed approximately 300 kg. Dry matter intake (DMI; P=0.01) and daily CH4 emission (P=0.002) were lowest on the FAT. However, CH4 emission per kg DMI (P=0.21) or per kg weight gain (P=0.44) was not different. The loss of CH4 as a percentage of gross energy intake tended to be lower on FAT (6.4%) than on CON (6.8%; P=0.08). It is concluded that the FAT may have potential to reduce CH4 emission from heifers, but further studies are warranted to document this effect.


Animal | 2014

Milk production is unaffected by replacing barley or sodium hydroxide wheat with maize cob silage in rations for dairy cows

Lone Hymøller; A.L.F. Hellwing; P. Lund; M.R. Weisbjerg

Starch is an important energy-providing nutrient for dairy cows that is most commonly provided from cereal grains. However, ruminal fermentation of large amounts of easily degradable starch leads to excessive production and accumulation of volatile fatty acids (VFA). VFA not only play a vital role in the energy metabolism of dairy cows but are also the main cause of ruminal acidosis and depressed feed intake. The aim of the present study was to compare maize cob silage (MCS) as an energy supplement in rations for dairy cows with highly rumen-digestible rolled barley and with sodium hydroxide wheat (SHW), which has a higher proportion of by-pass starch than barley. Two studies were carried out: (1) a production study on 45 Danish Holstein cows and (2) an intensive study to determine digestibilities, rumen fermentation patterns and methane emission using three rumen-cannulated Danish Holstein cows. Both studies were organised as a 3×3 Latin square with three experimental periods and three different mixed rations. The rations consisted of grass-clover silage and maize silage (~60% of dry matter (DM)), rapeseed cake, soybean meal, sugar beet pulp and one of three different cereals as a major energy supplement: MCS, SHW or rolled barley (~25% of DM). When MCS replaced barley or SHW as an energy supplement in the mixed rations, it resulted in a lower dry matter intake; however, the apparent total tract digestibilities of DM, organic matter, NDF, starch and protein were not different between treatments. The energy-corrected milk yield was unaffected by treatment. The fat content of the milk on the MCS ration was not different from the SHW ration, whereas it was higher on the barley ration. The protein content of the milk decreased when MCS was used in the ration compared with barley and SHW. From ruminal VFA patterns and pH measures, it appeared that MCS possessed roughage qualities with respect to rumen environment, while at the same time being sufficiently energy rich to replace barley and SHW as a major energy supplement for milk production. The environmental impact, expressed as methane emissions, was not different when comparing MCS, SHW and barley.


Animal Production Science | 2016

Effect of short-term infusion of hydrogen on enteric gas production and rumen environment in dairy cows

Dana Olijhoek; A.L.F. Hellwing; M.R. Weisbjerg; J. Dijkstra; A.L. Højberg; P. Lund

Methane (CH4) production by rumen methanogens lowers hydrogen (H2) pressure and, in theory, prevents inhibition of fermentation processes by H2 accumulation. The present study aimed at examining effects of short-term H2 infusion on CH4 production and the volatile fatty acid (VFA) profile. Four lactating Holstein dairy cows fitted with rumen cannula were each infused once with pure H2 into the rumen at a rate of 48.0 L/h during 5.75 h in between the morning and afternoon feeding. Gas exchange and feed intake were measured continuously by open-circuit respiration chambers during 5 days. Rumen liquid was sampled twice a day in connection with milking and feeding (0630 hours and 1700 hours) and analysed for VFA. Gas exchange and dry matter intake (DMI) were analysed for 5-h steady-state H2 concentrations (TI5) measured in respiration chambers and for 24-h time intervals (TI24) on the day before, during and after infusion. Hydrogen infusion did not affect the total VFA concentration and VFA molar proportions for either time interval. Methane production was higher for TI5 during infusion (130 L/5 h) than it was the day before infusion (120 L/5 h), but not the day after infusion (122 L/5 h). Methane production for TI24 and DMI for TI5 and TI24 were unaffected. Oxygen consumption and CH4 : CO2 were highest during infusion for TI5, but not for TI24. After correcting for H2 naturally produced, on average, 46.7 L H2/h was measured during TI5, indicating that 2.7% of the infused H2 was retained in the rumen. In conclusion, H2 infusion did not affect the VFA profile, but slightly increased CH4 production and CH4 : CO2.

Collaboration


Dive into the A.L.F. Hellwing's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Dijkstra

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Bannink

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

T. M. Storlien

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge