Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. L. Roquemore is active.

Publication


Featured researches published by A. L. Roquemore.


Physics of Plasmas | 2008

The effect of lithium surface coatings on plasma performance in the National Spherical Torus Experiment

H. Kugel; M.G. Bell; J.-W. Ahn; Jean Paul Allain; R. E. Bell; J.A. Boedo; C.E. Bush; David A. Gates; T. Gray; S. Kaye; R. Kaita; B. LeBlanc; R. Maingi; R. Majeski; D.K. Mansfield; J. Menard; D. Mueller; M. Ono; Stephen F. Paul; R. Raman; A. L. Roquemore; P. W. Ross; S.A. Sabbagh; H. Schneider; Christopher Skinner; V. Soukhanovskii; T. Stevenson; J. Timberlake; W.R. Wampler; L. Zakharov

National Spherical Torus Experiment [which M. Ono et al., Nucl. Fusion 40, 557 (2000)] high-power divertor plasma experiments have shown, for the first time, that benefits from lithium coatings applied to plasma facing components found previously in limited plasmas can occur also in high-power diverted configurations. Lithium coatings were applied with pellets injected into helium discharges, and also with an oven that directed a collimated stream of lithium vapor toward the graphite tiles of the lower center stack and divertor. Lithium oven depositions from a few milligrams to 1g have been applied between discharges. Benefits from the lithium coatings were sometimes, but not always, seen. These benefits sometimes included decreases in plasma density, inductive flux consumption, and edge-localized mode occurrence, and increases in electron temperature, ion temperature, energy confinement, and periods of edge and magnetohydrodynamic quiescence. In addition, reductions in lower divertor D, C, and O luminosi...


Review of Scientific Instruments | 2004

Spatially resolved spectra from a new x-ray imaging crystal spectrometer for measurements of ion and electron temperature profiles (invited)

M. Bitter; K. W. Hill; B. C. Stratton; A. L. Roquemore; D. Mastrovito; S. G. Lee; J. G. Bak; M. K. Moon; U. W. Nam; G. Smith; J. E. Rice; P. Beiersdorfer; B. S. Fraenkel

A new type of high-resolution x-ray imaging crystal spectrometer is being developed to measure ion and electron temperature profiles in tokamak plasmas. The instrument is particularly valuable for diagnosing plasmas with purely ohmic heating and rf heating, since it does not require the injection of a neutral beam—although it can also be used for the diagnosis of neutral-beam heated plasmas. The spectrometer consists of a spherically bent quartz crystal and a two-dimensional position-sensitive detector. It records spectra of helium-like argon (or krypton) from multiple sightlines through the plasma and projects a de-magnified image of a large plasma cross section onto the detector. The spatial resolution in the plasma is solely determined by the height of the crystal, its radius of curvature, and the Bragg angle. This new x-ray imaging crystal spectrometer may also be of interest for the diagnosis of ion temperature profiles in future large tokamaks, the Korea Superconducting Tokamak Advanced Research tok...


Physics of fluids. B, Plasma physics | 1991

The diffusion of fast ions in Ohmic TFTR discharges

W. W. Heidbrink; Cris W. Barnes; G. W. Hammett; Y. Kusama; S.D. Scott; M. C. Zarnstorff; L. C. Johnson; D. McCune; S.S. Medley; H. Park; A. L. Roquemore; J. D. Strachan; G. Taylor

Short duration (20 msec) neutral deuterium beams are injected into the TFTR tokamak [Plasma Physics and Controlled Nuclear Fusion Research 1986 (IAEA, Vienna, 1987), Vol. I, p. 51]. The subsequent confinement, thermalization, and diffusion of the beam ions are studied with multichannel neutron and charge exchange diagnostics. The central fast‐ion diffusion (<0.05 m2/sec ) is an order of magnitude smaller than typical thermal transport coefficients.


Physics of Plasmas | 2012

Snowflake divertor configuration studies in National Spherical Torus Experimenta)

V. Soukhanovskii; R. E. Bell; A. Diallo; S.P. Gerhardt; S.M. Kaye; E. Kolemen; B. LeBlanc; A.G. McLean; J. Menard; S. Paul; M. Podesta; R. Raman; T.D. Rognlien; A. L. Roquemore; D. D. Ryutov; F. Scotti; M. V. Umansky; D.J. Battaglia; M.G. Bell; D.A. Gates; R. Kaita; R. Maingi; D. Mueller; S.A. Sabbagh

Experimental results from NSTX indicate that the snowflake divertor (D. Ryutov, Phys. Plasmas 14, 064502 (2007)) may be a viable solution for outstanding tokamak plasma-material interface issues. Steady-state handling of divertor heat flux and divertor plate erosion remains to be critical issues for ITER and future concept devices based on conventional and spherical tokamak geometry with high power density divertors. Experiments conducted in 4–6 MW NBI-heated H-mode plasmas in NSTX demonstrated that the snowflake divertor is compatible with high-confinement core plasma operation, while being very effective in steady-state divertor heat flux mitigation and impurity reduction. A steady-state snowflake divertor was obtained in recent NSTX experiments for up to 600 ms using three divertor magnetic coils. The high magnetic flux expansion region of the scrape-off layer (SOL) spanning up to 50% of the SOL width λq was partially detached in the snowflake divertor. In the detached zone, the heat flux profile flatt...


Plasma Physics and Controlled Fusion | 1991

Overview of TFTR transport studies

R.J. Hawryluk; V. Arunasalam; Cris W. Barnes; Michael Beer; M.G. Bell; R. Bell; H. Biglari; M. Bitter; R. Boivin; N. Bretz; R. V. Budny; C.E. Bush; C. Z. Cheng; T. K. Chu; S Cohen; Steven C. Cowley; P C Efhimion; R.J. Fonck; E. Fredrickson; H. P. Furth; R.J. Goldston; G. J. Greene; B. Grek; L R Grisham; G. W. Hammett; W.W. Heidbrink; K. W. Hill; J Hosea; R A Hulse; H. Hsuan

A review of TFTR plasma transport studies is presented. Parallel transport and the confinement of suprathermal ions are found to be relatively well described by theory. Cross-field transport of the thermal plasma, however, is anomalous with the momentum diffusivity being comparable to the ion thermal diffusivity and larger than the electron thermal diffusivity in neutral beam heated discharges. Perturbative experiments have studied nonlinear dependencies in the transport coefficients and examined the role of possible nonlocal phenomena. The underlying turbulence has been studied using microwave scattering, beam emission spectroscopy and microwave reflectometry over a much broader range in k perpendicular to than previously possible. Results indicate the existence of large-wavelength fluctuations correlated with enhanced transport.


Nuclear Fusion | 1995

Studies of energetic confined alphas using the pellet charge exchange diagnostic on TFTR

M. P. Petrov; R.V. Budny; H. Duong; R.K. Fisher; N. N. Gorelenkov; J. McChesney; D.K. Mansfield; S. S. Medley; P.B. Parks; M.H. Redi; A. L. Roquemore

Results from recent DT experiments on TFTR to measure the energy distribution and radial density profile of fast confined alphas with the use of Li pellets and neutral particle analysis are presented. When a pellet is injected into the plasma, a toroidally extended ablation cloud is formed. A small fraction of the fusion alphas incident on the cloud is converted to helium neutrals as a result of electron capture processes. The escaping energetic helium neutrals are analysed and detected by the neutral particle analyser. Radially resolved energy spectra of trapped confined alphas in 0.5-2 MeV range and radial alpha density profiles are presented in this paper. The experimental data are compared with modelling results obtained with the TRANSP Monte Carlo code and with a specially developed Fokker-Planck post-processor (FPP) that uses the alpha source distribution produced by TRANSP. Comparison of the experimental data with TRANSP and FPP shows that the alphas in the plasma core of sawtooth free discharges in TFTR are well confined and slow down classically. The energy and radial profiles distributions outside the plasma core show the influence of stochastic ripple losses on alphas. Measurements for sawtoothing plasmas show a significant outward radial transport of trapped alphas


Physics of fluids. B, Plasma physics | 1990

Correlations of heat and momentum transport in the TFTR tokamak

S.D. Scott; V. Arunasalam; Cris W. Barnes; M.G. Bell; M. Bitter; R. Boivin; N. Bretz; R.V. Budny; C.E. Bush; A. Cavallo; T. K. Chu; S.A. Cohen; P. Colestock; S. Davis; D. Dimock; H.F. Dylla; P.C. Efthimion; A. B. Erhrardt; R.J. Fonck; E. D. Fredrickson; H. P. Furth; R.J. Goldston; G. J. Greene; B. Grek; L.R. Grisham; G. W. Hammett; R.J. Hawryluk; H. W. Hendel; K. W. Hill; E. Hinnov

Measurements of the toroidal rotation speed vφ(r) driven by neutral beam injection in tokamak plasmas and, in particular, simultaneous profile measurements of vφ, Ti, Te, and ne, have provided new insights into the nature of anomalous transport in tokamaks. Low‐recycling plasmas heated with unidirectional neutral beam injection exhibit a strong correlation among the local diffusivities, χφ≊χi>χe. Recent measurements have confirmed similar behavior in broad‐density L‐mode plasmas. These results are consistent with the conjecture that electrostatic turbulence is the dominant transport mechanism in the tokamak fusion test reactor tokamak (TFTR) [Phys. Rev. Lett. 58, 1004 (1987)], and are inconsistent with predictions both from test‐particle models of strong magnetic turbulence and from ripple transport. Toroidal rotation speed measurements in peaked‐density TFTR ‘‘supershots’’ with partially unbalanced beam injection indicate that momentum transport decreases as the density profile becomes more peaked. In hi...


Nuclear Fusion | 2005

Status of ITER neutron diagnostic development

A. V. Krasilnikov; M. Sasao; Yu A Kaschuck; T. Nishitani; P. Batistoni; V.S. Zaveryaev; S. Popovichev; Tetsuo Iguchi; O.N. Jarvis; J. Källne; C. Fiore; A. L. Roquemore; W.W. Heidbrink; R.K. Fisher; G. Gorini; D. V. Prosvirin; A.Yu. Tsutskikh; A. J. H. Donné; A.E. Costley; C. I. Walker

Due to the high neutron yield and the large plasma size many ITER plasma parameters such as fusion power, power density, ion temperature, fast ion energy and their spatial distributions in the plasma core can be measured well by various neutron diagnostics. Neutron diagnostic systems under consideration and development for ITER include radial and vertical neutron cameras (RNC and VNC), internal and external neutron flux monitors (NFMs), neutron activation systems and neutron spectrometers. The two-dimensional neutron source strength and spectral measurements can be provided by the combined RNC and VNC. The NFMs need to meet the ITER requirement of time-resolved measurements of the neutron source strength and can provide the signals necessary for real-time control of the ITER fusion power. Compact and high throughput neutron spectrometers are under development. A concept for the absolute calibration of neutron diagnostic systems is proposed. The development, testing in existing experiments and the engineering integration of all neutron diagnostic systems into ITER are in progress and the main results are presented.


Nuclear Fusion | 2013

Liquid lithium divertor characteristics and plasma?material interactions in NSTX high-performance plasmas

M. A. Jaworski; T. Abrams; Jean Paul Allain; M.G. Bell; R. E. Bell; A. Diallo; T.K. Gray; S. P. Gerhardt; R. Kaita; H. Kugel; B. LeBlanc; R. Maingi; A.G. McLean; J. Menard; R.E. Nygren; M. Ono; M. Podesta; A. L. Roquemore; S.A. Sabbagh; F. Scotti; C.H. Skinner; V. Soukhanovskii; D.P. Stotler

Liquid metal plasma-facing components (PFCs) have been proposed as a means of solving several problems facing the creation of economically viable fusion power reactors. To date, few demonstrations exist of this approach in a diverted tokamak and we here provide an overview of such work on the National Spherical Torus Experiment (NSTX). The Liquid Lithium Divertor (LLD) was installed and operated for the 2010 run campaign using evaporated coatings as the filling method. The LLD consisted of a copper-backed structure with a porous molybdenum front face. Nominal Li filling levels by the end of the run campaign exceeded the porosity void fraction by 150%. Despite a nominal liquid level exceeding the capillary structure and peak current densities into the PFCs exceeding 100 kA m−2, no macroscopic ejection events were observed. In addition, no substrate line emission was observed after achieving lithium-melt temperatures indicating the lithium wicks and provides a protective coating on the molybdenum porous layer. Impurity emission from the divertor suggests that the plasma is interacting with oxygen-contaminated lithium whether diverted on the LLD or not. A database of LLD discharges is analysed to consider whether there is a net effect on the discharges over the range of total deposited lithium in the machine. Examination of H-97L indicates that performance was constant throughout the run, consistent with the hypothesis that it is the quality of the surface layers of the lithium that impact performance. The accumulation of impurities suggests a fully flowing liquid lithium system to obtain a steady-state PFC on timescales relevant to NSTX.


Journal of Nuclear Materials | 1984

Initial limiter and getter operation in TFTR

Joseph L. Cecchi; M.G. Bell; M. Bitter; W. Blanchard; N. Bretz; C.E. Bush; S.A. Cohen; J. Coonrod; S. Davis; D. Dimock; B.L. Doyle; H.F. Dylla; P.C. Efthimion; R.J. Fonck; R.J. Goldston; S. von Goeler; B. Grek; D.J. Grove; R.J. Hawryluk; D.B. Heifetz; H. W. Hendel; K. W. Hill; R. Hulse; J. Isaacson; D. Johnson; L. C. Johnson; R. Kaita; S. Kaye; S.J. Kilpatrick; J. Kiraly

Abstract During the recent ohmic heating experiments on TFTR, the movable limiter array, preliminary inner bumper limiter, and prototype ZrAl alloy bulk getter surface pumping system were brought into operation. This paper summarizes the operational experience and plasma characteristics obtained with these components. The near-term upgrades of these systems are also discussed.

Collaboration


Dive into the A. L. Roquemore's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Kaita

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Maingi

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. S. Medley

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. Mueller

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge