A. Landais
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Landais.
Nature | 2004
Katrine K Andersen; Nobuhiko Azuma; Jean-Marc Barnola; Matthias Bigler; Pierre E. Biscaye; Nicolas Caillon; J. Chappellaz; Henrik Clausen; Dorthe Dahl-Jensen; Hubertus Fischer; Jacqueline Flückiger; Diedrich Fritzsche; Yoshiyuki Fujii; Kumiko Goto-Azuma; Karl Grönvold; Niels S. Gundestrup; M. Hansson; C. Huber; Christine S. Hvidberg; Sigfus J Johnsen; Ulf Jonsell; Jean Jouzel; Sepp Kipfstuhl; A. Landais; Markus Leuenberger; Reginald Lorrain; Valérie Masson-Delmotte; Heinrich Miller; Hideaki Motoyama; Hideki Narita
Two deep ice cores from central Greenland, drilled in the 1990s, have played a key role in climate reconstructions of the Northern Hemisphere, but the oldest sections of the cores were disturbed in chronology owing to ice folding near the bedrock. Here we present an undisturbed climate record from a North Greenland ice core, which extends back to 123,000 years before the present, within the last interglacial period. The oxygen isotopes in the ice imply that climate was stable during the last interglacial period, with temperatures 5u2009°C warmer than today. We find unexpectedly large temperature differences between our new record from northern Greenland and the undisturbed sections of the cores from central Greenland, suggesting that the extent of ice in the Northern Hemisphere modulated the latitudinal temperature gradients in Greenland. This record shows a slow decline in temperatures that marked the initiation of the last glacial period. Our record reveals a hitherto unrecognized warm period initiated by an abrupt climate warming about 115,000 years ago, before glacial conditions were fully developed. This event does not appear to have an immediate Antarctic counterpart, suggesting that the climate see-saw between the hemispheres (which dominated the last glacial period) was not operating at this time.Two deep ice cores from central Greenland, drilled in the 1990s, have played a key role in climate reconstructions of the Northern Hemisphere, but the oldest sections of the cores were disturbed in chronology owing to ice folding near the bedrock. Here we present an undisturbed climate record from a North Greenland ice core, which extends back to 123,000 years before the present, within the last interglacial period. The oxygen isotopes in the ice imply that climate was stable during the last interglacial period, with temperatures 5u2009°C warmer than today. We find unexpectedly large temperature differences between our new record from northern Greenland and the undisturbed sections of the cores from central Greenland, suggesting that the extent of ice in the Northern Hemisphere modulated the latitudinal temperature gradients in Greenland. This record shows a slow decline in temperatures that marked the initiation of the last glacial period. Our record reveals a hitherto unrecognized warm period initiated by an abrupt climate warming about 115,000 years ago, before glacial conditions were fully developed. This event does not appear to have an immediate Antarctic counterpart, suggesting that the climate see-saw between the hemispheres (which dominated the last glacial period) was not operating at this time.
Science | 2013
Frédéric Parrenin; Valérie Masson-Delmotte; Peter Köhler; Dominique Raynaud; Didier Paillard; Jakob Schwander; Carlo Barbante; A. Landais; Anna Wegner; Jean Jouzel
No Leader to Follow Changes in the concentration of atmospheric CO2 and surface air temperature are closely related. However, temperature can influence atmospheric CO2 as well as be influenced by it. Studies of polar ice cores have concluded that temperature increases during periods of rapid warming have preceded increases in CO2 by hundreds of years. Parrenin et al. (p. 1060; see the Perspective by Brook) present a revised age scale for the atmospheric component of Antarctic ice cores, based on the isotopic composition of the N2 that they contain, and suggest that temperature and CO2 changed synchronously over four intervals of rapid warming during the last deglaciation. Rising air temperature did not lead the increase of atmospheric carbon dioxide concentration during the last deglaciation. [Also see Perspective by Brook] Understanding the role of atmospheric CO2 during past climate changes requires clear knowledge of how it varies in time relative to temperature. Antarctic ice cores preserve highly resolved records of atmospheric CO2 and Antarctic temperature for the past 800,000 years. Here we propose a revised relative age scale for the concentration of atmospheric CO2 and Antarctic temperature for the last deglacial warming, using data from five Antarctic ice cores. We infer the phasing between CO2 concentration and Antarctic temperature at four times when their trends change abruptly. We find no significant asynchrony between them, indicating that Antarctic temperature did not begin to rise hundreds of years before the concentration of atmospheric CO2, as has been suggested by earlier studies.
Journal of Geophysical Research | 2003
A. Landais; J. Chappellaz; Marc Delmotte; Jean Jouzel; Thomas Blunier; Christine Bourg; Nicolas Caillon; Stéphane Cherrier; Bruno Malaizé; Valérie Masson-Delmotte; Dominique Raynaud; Jakob Schwander; Jørgen Peder Steffensen
parameters. The GRIP d 18 Oice chronological sequence is obtained by comparing a new set of d 18 O of atmospheric O2 and CH4 measurements from the bottom section of the GRIP core with their counterpart in the Vostok Antarctic profiles. This comparison clearly identifies ice from the penultimate glacial maximum (MIS 6, 190–130 kyr B.P.) in the GRIP core. Further it allows rough reconstruction of the last interglacial period and of the last glacial inception in Greenland which appears to lay its Antarctic counterpart. Our data suggest that while Antarctica is already entering into a glaciation, Greenland is still experiencing a warm maximum during MIS 5e. INDEX TERMS: 1040 Geochemistry: Isotopic composition/chemistry; 1827 Hydrology: Glaciology (1863); 3344 Meteorology and Atmospheric Dynamics: Paleoclimatology; KEYWORDS: interglacial, ice cap, firn
Analytical Chemistry | 2013
Elena S. F. Berman; Naomi E. Levin; A. Landais; Shuning Li; Thomas Owano
Stable isotopes of water have long been used to improve understanding of the hydrological cycle, catchment hydrology, and polar climate. Recently, there has been increasing interest in measurement and use of the less-abundant (17)O isotope in addition to (2)H and (18)O. Off-axis integrated cavity output spectroscopy (OA-ICOS) is demonstrated for accurate and precise measurements δ(18)O, δ(17)O, and (17)O-excess in liquid water. OA-ICOS involves no sample conversion and has a small footprint, allowing measurements to be made by researchers collecting the samples. Repeated (514) high-throughput measurements of the international isotopic reference water standard Greenland Ice Sheet Precipitation (GISP) demonstrate the precision and accuracy of OA-ICOS: δ(18)OVSMOW-SLAP = -24.74 ± 0.07‰ (1σ) and δ(17)OVSMOW-SLAP = -13.12 ± 0.05‰ (1σ). For comparison, the International Atomic Energy Agency (IAEA) value for δ(18)OVSMOW-SLAP is -24.76 ± 0.09‰ (1σ) and an average of previously reported values for δ(17)OVSMOW-SLAP is -13.12 ± 0.06‰ (1σ). Multiple (26) high-precision measurements of GISP provide a (17)O-excessVSMOW-SLAP of 23 ± 10 per meg (1σ); an average of previously reported values for (17)O-excessVSMOW-SLAP is 22 ± 11 per meg (1σ). For all these OA-ICOS measurements, precision can be further enhanced by additional averaging. OA-ICOS measurements were compared with two independent isotope ratio mass spectrometry (IRMS) laboratories and shown to have comparable accuracy and precision as the current fluorination-IRMS techniques in δ(18)O, δ(17)O, and (17)O-excess. The ability to measure accurately δ(18)O, δ(17)O, and (17)O-excess in liquid water inexpensively and without sample conversion is expected to increase vastly the application of δ(17)O and (17)O-excess measurements for scientific understanding of the water cycle, atmospheric convection, and climate modeling among others.
Water Resources Research | 2013
Jean Jouzel; Gilles Delaygue; A. Landais; Valérie Masson-Delmotte; Camille Risi; Françoise Vimeux
The isotopic composition of precipitation, in deuterium, oxygen 18 and oxygen 17, depends on the climatic conditions prevailing in the oceanic regions where it originates, mainly the sea surface temperature and the relative humidity of air. This dependency applies to present-day precipitation but also to past records which are extracted, for example, from polar ice cores. In turn, coisotopic measurements of deuterium and oxygen 18 offer the possibility to retrieve information about the oceanic origin of modern precipitation as well as about past changes in sea surface temperature and relative humidity of air. This interpretation of isotopic measurements has largely relied on simple Rayleigh-type isotopic models and is complemented by Lagrangian back trajectory analysis of moisture sources. It is now complemented by isotopic General Circulation Models (IGCM) in which the origin of precipitation can be tagged. We shortly review published results documenting this link between the oceanic sources of precipitation and their isotopic composition. We then present experiments performed with two different IGCMs, the GISS model II and the LMDZ model. We focus our study on marine water vapor and its contribution to precipitation over Antarctica and over the Andean region of South America. We show how IGCM experiments allow us to relate climatic conditions prevailing in the oceanic source of precipitation to its isotopic composition. Such experiments support, at least qualitatively, the current interpretation of ice core isotopic data in terms of changes in sea surface temperature. Additionally, we discuss recent studies clearly showing the added value of oxygen 17 measurements. Key Points Link between the isotopic content of precipitation and its oceanic origin Application of this method to polar ice cores & Andean precipitation Potential of combining deuterium-excess and oxygen 17-excess ©2013. American Geophysical Union. All Rights Reserved.
Journal of Geophysical Research | 2010
Camille Risi; A. Landais; Sandrine Bony; Jean Jouzel; Valérie Masson-Delmotte; Françoise Vimeux
Combined measurements of delta O-18, delta O-17, and delta D in ice cores, leading to d excess and O-17 excess, are expected to provide new constraints on the water cycle and past climates. We explore different processes, both in the source regions and during the poleward transport, that could explain the O-17 excess increase by 20 per meg observed from the Last Glacial Maximum (LGM) to Early Holocene (EH) at the Vostok station. Using a single-column model over tropical and subtropical oceans, we show that the relative humidity at the surface is the main factor controlling O-17 excess in source regions. Then, using a Rayleigh-type model, we show that the O-17 excess signal from the source region is preserved in the polar snowfall, contrary to d excess. Evaporative recharge over mid and high latitudes and delta O-18 seasonality in polar regions can also affect the Vostok O-17 excess but cannot account for most of the 20 per meg deglacial increase from LGM to EH. On the other hand, a decrease of the relative humidity at the surface (rh(s)) by 8 to 22% would explain the observed change in O-17 excess. Such a change would not necessarily be incompatible with a nearly unchanged boundary layer relative humidity, if the surface thermodynamic disequilibrium decreased by 4 degrees C. Such a change in rh(s) would affect source and polar temperatures reconstructions from delta O-18 and d excess measurements, strengthening the interest of O-17 excess measurements to better constrain such changes.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Renato Winkler; A. Landais; Camille Risi; Melanie Baroni; Alexey Ekaykin; Jean Jouzel; J. R. Petit; F. Prié; B. Minster; S. Falourd
Combined measurements of water isotopologues of a snow pit at Vostok over the past 60 y reveal a unique signature that cannot be explained only by climatic features as usually done. Comparisons of the data using a general circulation model and a simpler isotopic distillation model reveal a stratospheric signature in the 17O-excess record at Vostok. Our data and theoretical considerations indicate that mass-independent fractionation imprints the isotopic signature of stratospheric water vapor, which may allow for a distinction between stratospheric and tropospheric influences at remote East Antarctic sites.
Geophysical Research Letters | 2012
Emilie Capron; A. Landais; J. Chappellaz; D. Buiron; Hubertus Fischer; Sigfus J Johnsen; Jean Jouzel; Markus Leuenberger; Valérie Masson-Delmotte; Thomas F. Stocker
The orbital-scale transition from the last interglacial to glacial climate corresponds to the progressive organization of global millennial-scale climate variability. Here, we investigate the struc ...
Geochemistry Geophysics Geosystems | 2009
María Fernanda Sánchez Goñi; A. Landais; Isabel Cacho; Josette Duprat; Linda Rossignol
[1]xa0Three highly resolved pollen and sea surface temperature records from the Iberian margin (36–42°N) reveal the local evolution of vegetation and climate associated with the rapid climatic variability of marine isotope stage 3. The comparison of the climate at these midlatitudes with δD and d excess from Greenland ice cores shows that the north-south climatic gradient underwent strong variations during the long Greenland Interstadials (GIs) 8 and 12. After the Northern Hemispheric rapid warming at the Greenland Stadial (GS)-GI transition, the trend during the first part of the GI is a Greenland cooling and an Iberian warming. This increase of the North Atlantic climatic gradient led to moisture transportation to Greenland from midlatitudes (lightest d excess) and to a drying episode in Iberia. The subsequent temperature decrease in Greenland and Iberia associated with the precipitation increase in the latter region occurred when the major source of Greenland precipitation shifted to lower latitudes (d excess increase).
Journal of Geophysical Research | 2004
A. Landais; Jørgen Peder Steffensen; Nicolas Caillon; Jean Jouzel; Valérie Masson-Delmotte; Jakob Schwander
[1]xa0The disturbed stratigraphy of the ice in the lowest 10% of the Greenland GRIP ice core has been previously demonstrated using gas measurements (δ18O of O2 and CH4) on a few meters depth scale. However, rapid ice isotopic variations (on the scale of 20 cm) are experienced in the bottom of the GRIP ice core with complex chemical signatures that make them difficult to reconcile with a disturbed stratigraphy of the ice. This is the case for event 5e1, first described as a dramatic cooling 120 kyr BP. We analyzed at a 5 cm resolution the isotopic composition of the air from 2 m of the GRIP bottom ice core covering event 5e1. The δ15N measurements, combined with a basic firn modeling, lead to the solid conclusion that the rapid event 5e1 is not a climatic event. Rapid variations of δ18O of O2 (δ18Oatm) are in agreement with a disturbed ice stratigraphy. However, the double peak shape of the δ18Oatm, recalling chemical data at the same depth, requires processes of diffusion after the mixing or even postcoring, placing limits to the interpretation of some classical paleoclimatic proxies in small scale mixed ice (<1 m).