Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Litnovsky is active.

Publication


Featured researches published by A. Litnovsky.


Nuclear Fusion | 2007

Chapter 7: Diagnostics

A. J. H. Donné; A.E. Costley; R. Barnsley; Henrik Bindslev; R.L. Boivin; G. D. Conway; R.K. Fisher; R. Giannella; H. Hartfuss; M. von Hellermann; E. Hodgson; L. C. Ingesson; K. Itami; D.W. Johnson; Y. Kawano; T. Kondoh; A. V. Krasilnikov; Y. Kusama; A. Litnovsky; Ph. Lotte; P. Nielsen; T. Nishitani; F. Orsitto; B.J. Peterson; G. Razdobarin; J. Sánchez; M. Sasao; T. Sugie; G. Vayakis; V. S. Voitsenya

In order to support the operation of ITER and the planned experimental programme an extensive set of plasma and first wall measurements will be required. The number and type of required measurements will be similar to those made on the present-day large tokamaks while the specification of the measurements—time and spatial resolutions, etc—will in some cases be more stringent. Many of the measurements will be used in the real time control of the plasma driving a requirement for very high reliability in the systems (diagnostics) that provide the measurements. The implementation of diagnostic systems on ITER is a substantial challenge. Because of the harsh environment (high levels of neutron and gamma fluxes, neutron heating, particle bombardment) diagnostic system selection and design has to cope with a range of phenomena not previously encountered in diagnostic design. Extensive design and R&D is needed to prepare the systems. In some cases the environmental difficulties are so severe that new diagnostic techniques are required. a Author to whom any correspondence should be addressed.


Nuclear Fusion | 2009

Progress in research and development of mirrors for ITER diagnostics

A. Litnovsky; V. S. Voitsenya; T. Sugie; G. De Temmerman; A. E. Costley; A. J. H. Donné; K.Yu. Vukolov; I.I. Orlovskiy; J.N. Brooks; Jean Paul Allain; V. Kotov; A. Semerok; P.-Y. Thro; T. Akiyama; N. Yoshida; T. Tokunaga; K. Kawahata

Metallic mirrors will be used as plasma-viewing elements in all optical and laser diagnostic systems in ITER. In the harsh environment of ITER, the performance of mirrors will decrease mainly because of the erosion of their surfaces and deposition of impurities. The deterioration of the optical properties of diagnostic mirrors will directly affect the entire performance of the respective ITER diagnostics, possibly leading to their shutdown. Therefore, R&D on mirrors is of crucial importance for ITER diagnostics. There is a coordinated worldwide R&D programme supervised by the Specialists Working Group on first mirrors of the International Tokamak Physics Activity, Topical Group on Diagnostics. This paper provides an overview of new results in the field of first mirrors, covering the manufacturing of ITER mirror prototypes, investigations of mitigation of deposition and mirror cleaning and the predictive modelling of the mirror performance in ITER. The current status of research on beryllium deposition—a new critical area of mirror research—is given along with an outlook for future activities.


Nuclear Fusion | 2007

First mirrors for diagnostic systems of ITER

A. Litnovsky; V. S. Voitsenya; A. E. Costley; A. J. H. Donné

The majority of optical diagnostics presently foreseen for ITER will implement in-vessel metallic mirrors as plasma-viewing components. Mirrors are used for the observation of the plasma radiation in a very wide wavelength range: from about 1 nm up to a few mm. In the hostile ITER environment, mirrors are subject to erosion, deposition, particle implantation and other adverse effects which will change their optical properties, affecting the entire performance of the respective diagnostic systems. The Specialists Working Group (SWG) on first mirrors was established under the wings of the International Tokamak Physics Activity (ITPA) Topical Group (TG) on Diagnostics to coordinate and guide the investigations on diagnostic mirrors towards the development of optimal, robust and durable solutions for ITER diagnostic systems. The results of tests of various ITER-candidate mirror materials, performed in Tore-Supra, TEXTOR, DIII-D, TCV, T-10, TRIAM-1M and LHD under various plasma conditions, as well as an overview of laboratory investigations of mirror performance and mirror cleaning techniques are presented in the paper. The current tasks in the R&D of diagnostic mirrors will be addressed.


Plasma Physics and Controlled Fusion | 2008

Recent progress in understanding the behavior of dust in fusion devices

S. I. Krasheninnikov; A. Yu. Pigarov; R.D. Smirnov; M Rosenberg; Yasunori Tanaka; D.J. Benson; T. K. Soboleva; T.D. Rognlien; D A Mendis; B D Bray; D.L. Rudakov; J.H. Yu; W.P. West; A.L. Roquemore; C.H. Skinner; J. L. Terry; B. Lipschultz; A Bader; R. Granetz; C.S. Pitcher; N. Ohno; S. Takamura; S. Masuzaki; N. Ashikawa; Masaharu Shiratani; M. Tokitani; R Kumazawa; N. Asakura; T. Nakano; A. Litnovsky

It has been known for a long time that microscopic dust appears in plasmas in fusion devices. Recently it was shown that dust can be responsible for the termination of long- discharges. Also, in ITER-scale experiments dust can pose safety problems related to its chemical activity, tritium retention and radioactive content. In particular, the presence of dust in the vacuum chamber of ITER is one of the main concerns of the ITER licensing process. Here we review recent progress in the understanding of different experimental and theoretical aspects of the physics of dust dynamics and transport in fusion plasmas and discuss the remaining issues.


Nuclear Fusion | 2009

Dust studies in DIII-D and TEXTOR

D.L. Rudakov; A. Litnovsky; W.P. West; J.H. Yu; J.A. Boedo; B.D. Bray; S. Brezinsek; N.H. Brooks; M.E. Fenstermacher; M. Groth; E.M. Hollmann; A. Huber; A.W. Hyatt; S. I. Krasheninnikov; C.J. Lasnier; A.G. McLean; R.A. Moyer; A. Yu. Pigarov; V. Philipps; A. Pospieszczyk; R.D. Smirnov; J.P. Sharpe; W.M. Solomon; J.G. Watkins; C.P.C. Wong

Studies of naturally occurring and artificially introduced carbon dust are conducted in DIII-D and TEXTOR. In DIII-D, dust does not present operational concerns except immediately after entry vents. Submicrometre sized dust is routinely observed using Mie scattering from a Nd : Yag laser. The source is strongly correlated with the presence of type I edge localized modes (ELMs). Larger size (0.005–1 mm diameter) dust is observed by optical imaging, showing elevated dust levels after entry vents. Inverse dependence of the dust velocity on the inferred dust size is found from the imaging data. Heating of the dust particles by the neutral beam injection (NBI) and acceleration of dust particles by the plasma flows are observed. Energetic plasma disruptions produce significant amounts of dust; on the other hand, large flakes or debris falling into the plasma may induce a disruption. Migration of pre-characterized carbon dust is studied in DIII-D and TEXTOR by introducing micrometre-size particles into plasma discharges. In DIII-D, a sample holder filled with 30–40 mg of dust is inserted in the lower divertor and exposed, via sweeping of the strike points, to the diverted plasma flux of high-power ELMing H-mode discharges. After a brief dwell (~0.1 s) of the outer strike point on the sample holder, part of the dust penetrates into the core plasma, raising the core carbon density by a factor of 2–3 and resulting in a twofold increase in the radiated power. In TEXTOR, instrumented dust holders with 1–45 mg of dust are exposed in the scrape-off-layer 0–2 cm radially outside of the last closed flux surface in discharges heated with 1.4 MW of NBI. Launched in this configuration, the dust perturbed the edge plasma, as evidenced by a moderate increase in the edge carbon content, but did not penetrate into the core plasma.


Nuclear Fusion | 2013

Migration of tungsten dust in tokamaks: role of dust-wall collisions

Svetlana V. Ratynskaia; L. Vignitchouk; Panagiotis Tolias; Igor Bykov; Henric Bergsåker; A. Litnovsky; N. den Harder; E. Lazzaro

The modelling of a controlled tungsten dust injection experiment in TEXTOR by the dust dynamics code MIGRAINe is reported. The code, in addition to the standard dust–plasma interaction processes, also encompasses major mechanical aspects of dust–surface collisions. The use of analytical expressions for the restitution coefficients as functions of the dust radius and impact velocity allows us to account for the sticking and rebound phenomena that define which parts of the dust size distribution can migrate efficiently. The experiment provided unambiguous evidence of long-distance dust migration; artificially introduced tungsten dust particles were collected 120° toroidally away from the injection point, but also a selectivity in the permissible size of transported grains was observed. The main experimental results are reproduced by modelling.


Physica Scripta | 2016

Materials for DEMO and reactor applications-boundary conditions and new concepts

J. W. Coenen; Steffen Antusch; M. Aumann; W. Biel; J. Du; J. Engels; S. Heuer; A. Houben; T. Hoeschen; B. Jasper; F. Koch; J. Linke; A. Litnovsky; Y Mao; R. Neu; G. Pintsuk; J. Riesch; M. Rasinski; Jens Reiser; Michael Rieth; A. Terra; B. Unterberg; Th. Weber; T. Wegener; J.-H. You; Ch. Linsmeier

DEMO is the name for the first stage prototype fusion reactor considered to be the next step after ITER towards realizing fusion. For the realization of fusion energy especially, materials questions pose a significant challenge already today. Heat, particle and neutron loads are a significant problem to material lifetime when extrapolating to DEMO. For many of the issues faced, advanced materials solutions are under discussion or already under development. In particular, components such as the first wall and the divertor of the reactor can benefit from introducing new approaches such as composites or new alloys into the discussion. Cracking, oxidation as well as fuel management are driving issues when deciding for new materials. Here composites as well as strengthened CuCrZr components together with oxidation resilient tungsten alloys allow the step towards a fusion reactor. In addition, neutron induced effects such as transmutation, embrittlement and after-heat and activation are essential. Therefore, when designing a component an approach taking into account all aspects is required.


Nuclear Fusion | 2009

Capture by aerogel—characterization of mobile dust in tokamak scrape-off layer plasmas

Svetlana V. Ratynskaia; Henric Bergsåker; B. Emmoth; A. Litnovsky; A. Kreter; V. Philipps

The aim of this letter is to demonstrate the feasibility and potential of the novel in situ dust diagnostic method-capture by aerogel targets. Aerogel, a highly porous material with a density of a ...


Physica Scripta | 2009

Interactions of diamond surfaces with fusion relevant plasmas

G. De Temmerman; R.P. Doerner; P. John; S. Lisgo; A. Litnovsky; L. Marot; Samuele Porro; P. Petersson; M. Rubel; D.L. Rudakov; G.J. van Rooij; J. Westerhout; J. I. B. Wilson

The outstanding thermal properties of diamond and its low reactivity towards hydrogen may make it an attractive plasma-facing material for fusion and calls for a proper evaluation of its behaviour under exposure to fusion-relevant plasma conditions. Micro and nanocrystalline diamond layers, deposited on Mo and Si substrates by hot filament chemical vapour deposition (CVD), have been exposed both in tokamaks and in linear plasma devices to measure the erosion rate of diamond and study the modification of the surface properties induced by particle bombardment. Experiments in Pilot-PSI and PISCES-B have shown that the sputtering yield of diamond (both physical and chemical) was a factor of 2 lower than that of graphite. Exposure to detached plasma conditions in the DIII-D tokamak have evidenced a strong resistance of diamond against erosion under those conditions.


Plasma Physics and Controlled Fusion | 2010

Modelling of impurity deposition in gaps of castellated surfaces with the 3D-GAPS code

D. Matveev; A. Kirschner; A. Litnovsky; M. Komm; D. Borodin; V. Philipps; G. Van Oost

The Monte-Carlo neutral transport code 3D-GAPS is described. The code models impurity transport and deposition in remote areas, such as gaps between cells of castellated plasma-facing surfaces. A step-by-step investigation of the interplay of different processes that may influence the deposition inside gaps, namely particle reflection, elastic neutral collisions, different particle sources, chemical erosion and plasma penetration into gaps, is presented. Examples of modelling results in application to the TEXTOR experiment with a castellated test limiter are provided. It is shown that only with the assumption of the presence of species with different reflection probabilities, do simulated carbon deposition profiles agree with experimental observations for side surfaces of the gaps. These species can be attributed to different particle sources, e.g. carbon atoms and hydrocarbon radicals. Background carbon ions and atoms have low and moderate values of the reflection coefficient (R ≤ 0.6), while some of the hydrocarbon radicals produced by chemical erosion of redeposited carbon layers have high reflection probability (R ≥ 0.9). Deposition at the bottom of the gaps cannot be adequately reproduced unless extreme assumptions on particle sources and reflection properties are imposed. Elastic neutral collisions and ionization of neutrals escaping the gaps have no significant influence on the results. Nevertheless, particle-in-cell simulations of plasma penetration into gaps are essential for estimating the incoming ion flux and leading to a better quantitative agreement with experimental observations.

Collaboration


Dive into the A. Litnovsky's collaboration.

Top Co-Authors

Avatar

A. Kreter

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

V. Philipps

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

T. Wegener

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

J. W. Coenen

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

P. Wienhold

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

M. Rasinski

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

F. Klein

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

U. Samm

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

A. Kirschner

Forschungszentrum Jülich

View shared research outputs
Researchain Logo
Decentralizing Knowledge