Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A Lo is active.

Publication


Featured researches published by A Lo.


Medical Physics | 2004

Mapping of the prostate in endorectal coil-based MRI/MRSI and CT: a deformable registration and validation study.

Jane B. Lian; Lei Xing; S Hunjan; Charles Lucien Dumoulin; J. Levin; A Lo; Ronald Dean Watkins; Kenneth William Rohling; Randy Otto John Giaquinto; Dong Hyun Kim; Daniel M. Spielman; Bruce L. Daniel

The endorectal coil is being increasingly used in magnetic resonance imaging (MRI) and MR spectroscopic imaging (MRSI) to obtain anatomic and metabolic images of the prostate with high signal-to-noise ratio (SNR). In practice, however, the use of endorectal probe inevitably distorts the prostate and other soft tissue organs, making the analysis and the use of the acquired image data in treatment planning difficult. The purpose of this work is to develop a deformable image registration algorithm to map the MRI/MRSI information obtained using an endorectal probe onto CT images and to verify the accuracy of the registration by phantom and patient studies. A mapping procedure involved using a thin plate spline (TPS) transformation was implemented to establish voxel-to-voxel correspondence between a reference image and a floating image with deformation. An elastic phantom with a number of implanted fiducial markers was designed for the validation of the quality of the registration. Radiographic images of the phantom were obtained before and after a series of intentionally introduced distortions. After mapping the distorted phantom to the original one, the displacements of the implanted markers were measured with respect to their ideal positions and the mean error was calculated. In patient studies, CT images of three prostate patients were acquired, followed by 3 Tesla (3 T) MR images with a rigid endorectal coil. Registration quality was estimated by the centroid position displacement and image coincidence index (CI). Phantom and patient studies show that TPS-based registration has achieved significantly higher accuracy than the previously reported method based on a rigid-body transformation and scaling. The technique should be useful to map the MR spectroscopic dataset acquired with ER probe onto the treatment planning CT dataset to guide radiotherapy planning.


Cancer | 2001

Long term results of radioactive gold grain implantation for the treatment of persistent and recurrent nasopharyngeal carcinoma

Dora L.W. Kwong; William I. Wei; Ashley C. K. Cheng; D. Choy; A Lo; P.M. Wu; Jonathan S.T. Sham

Brachytherapy is useful for the reirradiation of nasopharyngeal carcinoma. In the current study, the long term treatment results of permanent radioactive gold198 grain interstitial implantation in patients with persistent and recurrent nasopharyngeal carcinoma were reviewed.


Technology in Cancer Research & Treatment | 2008

Stereotactic Radiosurgery for a Cardiac Sarcoma: A Case Report

Scott G. Soltys; M. Yashar S. Kalani; Samuel H. Cheshier; Katalin A. Szabo; A Lo; Steven D. Chang

Pulmonary artery intimal sarcoma is an uncommon tumor with a poor prognosis. We report a case of a 75-year-old man with a pulmonary artery sarcoma, recurrent following surgical resection. To palliate symptoms of this recurrence, he underwent CyberKnife stereotactic radiosurgery with a clinical and radiographic response of his treated disease. No acute or sub-acute toxicity was seen until the patients death due to metastatic disease 10 weeks following treatment. The feasibility and short-term safety of this technique are reviewed, with emphasis on the stereotactic planning considerations, such as mediastinal organ movement and radiation tolerance.


Circulation-arrhythmia and Electrophysiology | 2015

Stereotactic Ablative Radiotherapy for the Treatment of Refractory Cardiac Ventricular Arrhythmia

Billy W. Loo; Scott G. Soltys; L Wang; A Lo; B Fahimian; Andrei Iagaru; Linda Norton; X. Shan; Edward A. Gardner; Thomas Fogarty; Patrick Maguire; Amin Al-Ahmad

A 71-year-old man with coronary artery disease, coronary artery bypass grafting in 2000, baseline ejection fraction of 0.24, and implantation of a single chamber implanted cardioverter defibrillator (ICD) in 2009 for ventricular tachycardia (VT) presented with continuous episodes of nonsustained and sustained VT refractory to sotalol and mexiletine. Despite angioplasty and stent for coronary artery disease, VT continued for 2 years. Medical history included atrial fibrillation and oxygen-dependent chronic obstructive pulmonary disease. Baseline electrocardiogram (ECG) showed atrial fibrillation with a ventricular rate of 82 beats per minute with inferior Q waves and QRS duration of 90 ms. Twelve-lead ECG during VT showed a regular, wide-complex tachycardia at 160 beats per minute (CL 380–400 ms), with a right bundle branch block pattern, superior axis, precordial transition at V3–V4. His ICD log showed numerous VT episodes, with a single morphology seen on intracardiac ventricular electrogram, cycle length 380–411ms. Episodes were nonsustained, pace-terminated, and shock-terminated. As catheter ablation was relatively medically contraindicated, he consented to a Food and Drug Administration and Institutional Review Board–approved compassionate-use protocol of stereotactic arrhythmia radioablation (STAR), noninvasive ablation of VT substrate by stereotactic ablative radiotherapy (SABR) techniques for tumors. STAR therapy was delivered in October, 2012. Baseline echocardiogram showed a dilated left ventricle (LV), ejection fraction of 0.24, with basal inferior aneurysm, and apical and infero-posterior akinesis. Positron emission tomography–computed tomography showed extensive hypometabolic scar in the LV extending between the LV base and the apex, involving the inferior, inferoseptal, and inferolateral walls. A target for STAR was delineated using proprietary visualization and contouring software (CardioPlan™, CyberHeart™, Portola Valley, CA), outlining the target volume corresponding to what would have been the …


Seminars in Radiation Oncology | 2016

Dose-Response Modeling of the Visual Pathway Tolerance to Single-Fraction and Hypofractionated Stereotactic Radiosurgery☆☆☆

Susan M. Hiniker; L.A. Modlin; Clara Y.H. Choi; Banu Atalar; Kira Seiger; Michael S. Binkley; Jeremy P. Harris; Yaping Joyce Liao; Nancy J. Fischbein; L Wang; Anthony Ho; A Lo; Steven D. Chang; Griffith R. Harsh; Iris C. Gibbs; Steven L. Hancock; Gordon Li; John R. Adler; Scott G. Soltys

Patients with tumors adjacent to the optic nerves and chiasm are frequently not candidates for single-fraction stereotactic radiosurgery (SRS) due to concern for radiation-induced optic neuropathy. However, these patients have been successfully treated with hypofractionated SRS over 2-5 days, though dose constraints have not yet been well defined. We reviewed the literature on optic tolerance to radiation and constructed a dose-response model for visual pathway tolerance to SRS delivered in 1-5 fractions. We analyzed optic nerve and chiasm dose-volume histogram (DVH) data from perioptic tumors, defined as those within 3mm of the optic nerves or chiasm, treated with SRS from 2000-2013 at our institution. Tumors with subsequent local progression were excluded from the primary analysis of vision outcome. A total of 262 evaluable cases (26 with malignant and 236 with benign tumors) with visual field and clinical outcomes were analyzed. Median patient follow-up was 37 months (range: 2-142 months). The median number of fractions was 3 (1 fraction n = 47, 2 fraction n = 28, 3 fraction n = 111, 4 fraction n = 10, and 5 fraction n = 66); doses were converted to 3-fraction equivalent doses with the linear quadratic model using α/β = 2Gy prior to modeling. Optic structure dose parameters analyzed included Dmin, Dmedian, Dmean, Dmax, V30Gy, V25Gy, V20Gy, V15Gy, V10Gy, V5Gy, D50%, D10%, D5%, D1%, D1cc, D0.50cc, D0.25cc, D0.20cc, D0.10cc, D0.05cc, D0.03cc. From the plan DVHs, a maximum-likelihood parameter fitting of the probit dose-response model was performed using DVH Evaluator software. The 68% CIs, corresponding to one standard deviation, were calculated using the profile likelihood method. Of the 262 analyzed, 2 (0.8%) patients experienced common terminology criteria for adverse events grade 4 vision loss in one eye, defined as vision of 20/200 or worse in the affected eye. One of these patients had received 2 previous courses of radiotherapy to the optic structures. Both cases were meningiomas treated with 25Gy in 5 fractions, with a 3-fraction equivalent optic nerve Dmax of 19.2 and 22.2Gy. Fitting these data to a probit dose-response model enabled risk estimates to be made for these previously unvalidated optic pathway constraints: the Dmax limits of 12Gy in 1 fraction from QUANTEC, 19.5Gy in 3 fractions from Timmerman 2008, and 25Gy in 5 fractions from AAPM Task Group 101 all had less than 1% risk. In 262 patients with perioptic tumors treated with SRS, we found a risk of optic complications of less than 1%. These data support previously unvalidated estimates as safe guidelines, which may in fact underestimate the tolerance of the optic structures, particularly in patients without prior radiation. Further investigation would refine the estimated normal tissue complication probability for SRS near the optic apparatus.


Cureus | 2016

Stereotactic Arrhythmia Radioablation (STAR) of Ventricular Tachycardia: A Treatment Planning Study

L Wang; B Fahimian; Scott G. Soltys; A Lo; Edward A. Gardner; Patrick Maguire; Billy W. Loo

Purpose The first stereotactic arrhythmia radioablation (STAR) of ventricular tachycardia (VT) was delivered at Stanford on a robotic radiosurgery system (CyberKnife® G4) in 2012. The results warranted further investigation of this treatment. Here we compare dosimetrically three possible treatment delivery platforms for STAR. Methods The anatomy and target volume of the first treated patient were used for this study. A dose of 25 Gy in one fraction was prescribed to the planning target volume (PTV). Treatment plans were created on three treatment platforms: CyberKnife® G4 system with Iris collimator (Multiplan, V. 4.6)(Plan #1), CyberKnife® M6 system with InCise 2TM multileaf collimator (Multiplan V. 5.3)(Plan #2) and Varian TrueBeamTM STx with HD 120TM MLC and 10MV flattening filter free (FFF) beam (Eclipse planning system, V.11) (Plan #3 coplanar and #4 noncoplanar VMAT plans). The four plans were compared by prescription isodose line, plan conformity index, dose gradient, as well as dose to the nearby critical structures. To assess the delivery efficiency, planned monitor units (MU) and estimated treatment time were evaluated. Results Plans #1-4 delivered 25 Gy to the PTV to the 75.0%, 83.0%, 84.3%, and 84.9% isodose lines and with conformity indices of 1.19, 1.16, 1.05, and 1.05, respectively. The dose gradients for plans #1-4 were 3.62, 3.42, 3.93, and 3.73 with the CyberKnife® MLC plan (Plan #2) the best, and the TrueBeamTM STx co-planar plan (Plan #3) the worst. The dose to nearby critical structures (lung, stomach, bowel, and esophagus) were all well within tolerance. The MUs for plans #1-4 were 27671, 16522, 6275, and 6004 for an estimated total-treatment-time/beam-delivery-time of 99/69, 65/35, 37/7, and 56/6 minutes, respectively, under the assumption of 30 minutes pretreatment setup time. For VMAT gated delivery, a 40% duty cycle, 2400MU/minute dose rate, and an extra 10 minutes per extra arc were assumed. Conclusion Clinically acceptable plans were created with all three platforms. Plans with MLC were considerably more efficient in MU. CyberKnife® M6 with InCise 2TM collimator provided the most conformal plan (steepest dose drop-off) with significantly reduced MU and treatment time. VMAT plans were most efficient in MU and delivery time. Fluoroscopic image guidance removes the need for additional fiducial marker placement; however, benefits may be moderated by worse dose gradient and more operator-dependent motion management by gated delivery.


Medical Dosimetry | 2012

Trigeminal neuralgia treatment dosimetry of the Cyberknife

Anthony Ho; A Lo; Sonja Dieterich; Scott G. Soltys; Iris C. Gibbs; Steve G. Chang; John R. Adler

There are 2 Cyberknife units at Stanford University. The robot of 1 Cyberknife is positioned on the patients right, whereas the second is on the patients left. The present study examines whether there is any difference in dosimetry when we are treating patients with trigeminal neuralgia when the target is on the right side or the left side of the patient. In addition, we also study whether Monte Carlo dose calculation has any effect on the dosimetry. We concluded that the clinical and dosimetric outcomes of CyberKnife treatment for trigeminal neuralgia are independent of the robot position. Monte Carlo calculation algorithm may be useful in deriving the dose necessary for trigeminal neuralgia treatments.


Medical Physics | 2016

SU-F-T-481: Physics Evaluation of a Newly Released InCise™ Multileaf Collimator for CyberKnife M6™ System

L Wang; E Chin; A Lo

PURPOSE This work reports the results of the physics evaluation of a newly released InCise™2 Multileaf Collimator (MLC) installed in our institution. METHODS Beam property data was measured with unshielded diode and EBT2 films. The measurements included MLC leaf transmission, beam profiles, output factors and tissue-phantom ratios. MLC performance was evaluated for one month after commissioning. Weekly Garden Fence tests were performed for leaf / bank positioning in standard (A/P) and clinically relevant non-standard positions, before and after MLC driving exercises of 10+ minutes. Daily Picket Fence test and AQA test, End-to-End tests and dosimetric quality assurance were performed to evaluate the overall system performance. RESULTS All measurements including beam energy, flatness and symmetry, were within manufacture specifications. Leaf transmission was 0.4% <0.5% specification. The values of output factors ranged from 0.825 (7.6 mm × 7.5 mm) to 1.026 (115.0 mm × 100.1 mm). Average beam penumbra at 10 cm depth ranged from 2.7mm/2.7mm(7.6 mm × 7.5 mm) to 6.0 mm/6.2mm(84.6 mm × 84.7 mm). Slight penumbra difference (<10% from average penumbra for fields >20 mm) was observed in the direction perpendicular to leaf motion due to the tilting of the leaf housing. Mean leaf position offsets was -0.08±0.07mm and -0.13 ± 0.08 for X1 and X2 leaf banks in 13 Garden Fence tests. No significant difference on average leaf positioning offsets was observed between different leaf orientations and before/after MLC driving exercises. Six End-to-End tests showed 0.43±0.23mm overall targeting accuracy. Picket-Fence and AQA showed stable performance of MLC during the test period. Dosimetric point dose measurements for test cases agreed with calculation within 3%. All film measurements on relative dose had Gamma (2%, 2mm) passing rate of >95%. CONCLUSION The Incise™2 MLC for CyberKnife M6™ was proven to be accurate and reliable, and it is currently in clinical use. Stanford was one of the physics evaluation sites for the newly released InCise 2 MLC for Accuray Inc.


Medical Physics | 2012

SU‐E‐T‐418: Evaluation of Peripheral Dose for SRS Treatment Radiations with the VIS CyberKnife: A Phantom Study

Georgios Kalantzis; A Lo; Sonja Dieterich

PURPOSE Stereotactic radiosurgery (SRS) procedures are known to deliver a very high dose per fraction and thus, the increased risk of secondary types of cancer due to increased peripheral dose could be a limiting factor for the long term survival of the patients. The aim of this study is to evaluate the peripheral dose (PD) received at preselected anatomical sites in an anthropomorphic phantom for treatments of intracranial lesions with the CyberRnife. METHODS Eight patients treated using the CyberRnife were selected for this study. Organs at risk and target were delineated on volumetric CT data and treatment planning (Multiplan v.4.5.0) was optimized accordingly, in order to achieve the required prescribed target dose and critical structures sparing for each patient. The final treatment plan was delivered with a CyberRnife VIS (Accuray, Inc., Sunnyvale, CA) operating with a dose rate of 1000 MU/min at a flattening filter free mode and upgraded shielding. We performed our measurements using a male anthropomorphic RANDO phantom (Alderson Research Laboratories, Inc., Stamford, CT). Groups of three TLD 100 were placed anteriorly inside RANDO at a depth of 5 cm at locations corresponding to the thyroid, breast or lung, uterus and inferior abdomen for each treatment plan. RESULTS The average percentage dose normalized to the prescribed dose for the thyroid gland was 0.92+0.23 % with a max of 1.95%. The maximum reduction of the PD (expressed as percentage of the prescribed dose) was 80% between the thyroid gland and the lower pelvic area. Similarly the PD normalized to the number of MU showed an average of 0.84×10-3 (cGy/MU), with a max of 0.0025 (cGy/MU) for the thyroid gland region. CONCLUSIONS It is evident that the PD is proportional to the number of MU as well as to the prescribed dose. These correlations can be utilized to estimate the PD during intracranial treatments.


Medical Physics | 2010

SU‐GG‐T‐442: Dose Verification of SRS Monte Carlo Plan with a Moving Anthropomorphic Phantom

A Lo; Anthony Ho; Sonja Dieterich

Purpose: Dose verification of Stereotactic Radiosurgery plan using Monte Carlo for tissue heterogeneity correction with a moving anthropomorphic phantom Method and Materials: An anthropomorphic lung phantom has gold fiducials, TLD capsules and GAFChromic films imbedded in a target in the left lung,TLD capsules are also inserted in heart and cord structures. The phantom was scanned, CT images were sent to Cyberknife Multiplan for planning. Target and critical structures were contoured. A SRS treatment plan with no tissue heterogeneity correction was generated to give 6Gy to 95% of the target, 5.4Gy to 99% of the target, no point > 2cm from target > 3.5Gy, conformai index < 1.2, cord < 1.8Gy, heart < 3Gy, 10% of whole lung < 2Gy. The plan was recalculated with Monte Carlo with 2% uncertainty for tissue heterogeneity correction for dose delivery. During delivery the phantom moved in superior/inferior and anterior/posterior direction, Cyberknife Synchrony tracking system took orthogonal x‐ray images of the phantom while infra‐red camera tracked LED diodes placed on the phantom to track phantom motion in real time. After the fiducials were identified by the tracking program and correlated with the motion of LED diodes, a motion model of the target was built; radiation started with the Cyberknife robot following the predicted target motion and adjusted its position during irradiation. Throughout delivery, the motion model was updated and adjusted with new x‐ray images of the fiducials. Results: Target TLD was 98.3% of Monte Carlodose;heart and cord TLD were within 7% acceptability. Profiles from 3 orthogonal films were displaced L/R 0mm/3mm, P/A 1mm/5mm and I/S 1mm/2mm from treatment plan profiles, within 5mm acceptability. Conclusion: Cyberknife Multiplan with Monte Carlo accurately predicts dose in heterogeneous tissue; Cyberknife Synchrony tracking system delivers dose accurately to a target in a moving phantom.

Collaboration


Dive into the A Lo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

L Wang

Stanford University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cheng Yu

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge