Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. M. Fink is active.

Publication


Featured researches published by A. M. Fink.


Archive | 1993

Classical and New Inequalities in Analysis

D. S. Mitrinović; Josip Pečarić; A. M. Fink

Preface. Organization of the Book. Notations. I. Convex Functions and Jensens Inequality. II. Some Recent Results Involving Means. III. Bernoullis Inequality. IV. Cauchys and Related Inequalities. V. Holder and Minkowski Inequalities. VI. Generalized Holder and Minkowski Inequalities. VII. Connections Between General Inequalities. VIII. Some Determinantal and Matrix Inequalities. IX. Cebysevs Inequality. X. Gruss Inequality. XI. Steffensens Inequality. XII. Abels and Related Inequalities. XIII. Some Inequalities for Monotone Functions. XIV. Youngs Inequality. XV. Bessels Inequality. XVI. Cyclic Inequations. XVII. The Centroid Method in Inequalities. XVII. Triangle Inequalities. XVIII. Norm Inequalities. XIX. More on Norm Inequalities. XX. Grams Inequality. XXI. Frejer-Jacksons Inequalities and Related Results. XXII. Mathieus Inequality. XXIII. Shannons Inequality. XXIV. Turans Inequality from the Power Sum Theory. XXV. Continued Fractions and Pade Approximation Method. XXVI. Quasilinearization Methods for Proving Inequalities. XXVIII. Dynamic Programming and Functional Equation Approaches to Inequalities. XXIX. Interpolation Inequalities. XXX. Minimax Inequalities. Name Index.


Archive | 1974

Almost periodic differential equations

A. M. Fink

Almost periodic functions.- Uniformly almost periodic families.- The fourier series theory.- Modules and exponents.- Linear constant coefficient equations.- Linear almost periodic equations.- Exponential dichotomy and kinematic similarity.- Fixed point methods.- Asymptotic almost periodic functions and other weaker conditions.- Separated solutions.- Stable solutions.- First order equations.- Second order equations.- Averaging.


Archive | 1991

Inequalities involving functions and their integrals and derivatives

D. S. Mitrinović; Josip Pečarić; A. M. Fink

I. Landau-Kolmogorov and related inequalities.- II. An inequality ascribed to Wirtinger and related results.- III. Opials inequality.- IV. Hardys, Carlemans and related inequalities.- V. Hilberts and related inequalities.- VI. Inequalities of Lyapunov and of De la Vallee Poussin.- VII. Zmorovi?s and related inequalities.- VIII. Carlsons and related inequalities.- IX. Inequalities involving kernels.- X. Convolution, rearrangement and related inequalities.- XI. Inequalities of Caplygin type.- XII. Inequalities of Gronwall type of a single variable.- XIII. Gronwall inequalities in higher dimension.- XIV. Gronwall inequalities on other spaces: discrete, functional and abstract.- XV. Integral inequalities involving functions with bounded derivatives.- XVI. Inequalities of Bernstein-Mordell type.- XVII. Methods of proofs for integral inequalities.- XVIII. Particular inequalities.- Name Index.


Journal of Mathematical Analysis and Applications | 1982

Kolmogorov-Landau inequalities for monotone functions

A. M. Fink

where llfll = ess su~-~~~~~ If(t Kolmogorov [2] suceeded in finding the best possible constants in (1) where the norm is as in (2). Except for isolated results, no new progress was made until Schoenberg and Cavaretta [3] found the best possible constants for llfll = su~~>~ If(f We propose to prove inequalities about various clases of monotone functions which yield, as special cases, pointwise inequalities of the form (1). For example,


Journal of Differential Equations | 1969

Liapunov functions and almost periodic solutions for almost periodic systems

A. M. Fink; George Seifert

Most of the well-known conditions for the existence of almost periodic solutions of systems of ordinary differential equations with almost periodic time dependence involve stability conditions of some sort on a bounded solution; cf. [I], [2], for examples. Although a very general condition developed by L. Amerio [3] does not explicitly involve stability concepts, its use usually involves imposing stability conditions, usually of global type, on bounded solutions. While recently an approach to the existence problem via dynamical systems has yielded conditions in terms of local stability [2], it has also been known that global stability of a conditional type is sufficient for the use of America’s theorem [4], [5]; such conditional stability does not seem to be easily applicable to the dynamical system approach. It is the purpose of this paper to develop conditions, in terms of Liapunov functions, sufficient for the uniqueness of bounded solutions of systems. These conditions essentially impose a type of conditional stability on such bounded solutions, and by use of Amerio’s theorem these again yield sufficient conditions that such bounded solutions be almost periodic. Hence, the Liapunov functions we use are not assumed positive definite near the origin. In fact, our hypotheses in these Liapunov functions are along the lines of those given by LaSalle for certain stability results for autonomous systems [7].


Journal of Differential Equations | 1990

Positive almost periodic solutions of some delay integral equations

A. M. Fink; Juan A. Gatica

The delay integral equation x(t) = ∝tt − τ f(s, x(s)) ds which arises in models for the spread of epidemics, is studied with the aim of establishing the existence of positive almost periodic solutions for large values of τ when f(t, x) is uniformly almost periodic in t for x in compact subsets of R+. Under reasonable assumptions on f it is shown that there exist two positive numbers τ∗ τ0 they do exist. A priori bounds on the set of positive solutions and uniqueness results are also obtained.


Aequationes Mathematicae | 1973

Discrete Inequalities of Generalized Wirtinger Type

A. M. Fink

DigiZeitschriften e.V. gewährt ein nicht exklusives, nicht übertragbares, persönliches und beschränktes Recht auf Nutzung dieses Dokuments. Dieses Dokument ist ausschließlich für den persönlichen, nicht kommerziellen Gebrauch bestimmt. Das Copyright bleibt bei den Herausgebern oder sonstigen Rechteinhabern. Als Nutzer sind Sie sind nicht dazu berechtigt, eine Lizenz zu übertragen, zu transferieren oder an Dritte weiter zu geben. Die Nutzung stellt keine Übertragung des Eigentumsrechts an diesem Dokument dar und gilt vorbehaltlich der folgenden Einschränkungen: Sie müssen auf sämtlichen Kopien dieses Dokuments alle Urheberrechtshinweise und sonstigen Hinweise auf gesetzlichen Schutz beibehalten; und Sie dürfen dieses Dokument nicht in irgend einer Weise abändern, noch dürfen Sie dieses Dokument für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, aufführen, vertreiben oder anderweitig nutzen; es sei denn, es liegt Ihnen eine schriftliche Genehmigung von DigiZeitschriften e.V. und vom Herausgeber oder sonstigen Rechteinhaber vor. Mit dem Gebrauch von DigiZeitschriften e.V. und der Verwendung dieses Dokuments erkennen Sie die Nutzungsbedingungen an.


Aequationes Mathematicae | 1990

Jensen inequalities for functions with higher monotonicities

A. M. Fink; M. JodeitJr

SummaryWe investigate generalizations of the classical Jensen and Chebyshev inequalities. On one hand, we restrict the class of functions and on the other we enlarge the class of measures which are allowed. As an example, consider the inequality (J)ϕ(∫f(x) dμ) ⩽ A ∫ ϕ(f(x) dμ, d∫ dμ = 1. Iff is an arbitrary nonnegativeLx function, this holds ifμ ⩾ 0,ϕ is convex andA = 1. Iff is monotone the measure μ need not be positive for (J) to hold for all convex ϕ withA = 1. If ϕ has higher monotonicity, e.g., ϕ′ is also convex, then we get a version of (J) withA < 1 and measures μ that need not be positive.


Siam Journal on Mathematical Analysis | 1974

Conjugate Inequalities for Functions and Their Derivatives

A. M. Fink

We consider finding the best possible constants


Siam Journal on Applied Mathematics | 1974

Convergence and Almost Periodicity of Solutions of Forced Lienard Equations

A. M. Fink

C = C(n,alpha ,beta ,p,q)

Collaboration


Dive into the A. M. Fink's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. JodeitJr

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge