A. M. G. Pinto
Instituto Superior de Engenharia do Porto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. M. G. Pinto.
Journal of Adhesion Science and Technology | 2011
R.D.S.G. Campilho; A. M. G. Pinto; M. D. Banea; R. F. Silva; L.F.M. da Silva
Adhesive bonding of components has become more efficient in recent years due to the developments in adhesive technology, which has resulted in higher peel and shear strengths, and also in allowable ductility up to failure. As a result, fastening and riveting methods are being progressively replaced by adhesive bonding, allowing a big step towards stronger and lighter unions. However, single-lap bonded joints still generate substantial peel and shear stress concentrations at the overlap edges that can be harmful to the structure, especially when using brittle adhesives that do not allow plasticization in these regions. In this work, a numerical and experimental study is performed to evaluate the feasibility of bending the adherends at the ends of the overlap for the strength improvement of single-lap aluminium joints bonded with a brittle and a ductile adhesive. Different combinations of joint eccentricity were tested, including absence of eccentricity, allowing the optimization of the joint. A Finite Element stress and failure analysis in ABAQUS® was also carried out to provide a better understanding of the bent configuration. Results showed a major advantage of using the proposed modification for the brittle adhesive, but the joints with the ductile adhesive were not much affected by the bending technique.
Journal of Adhesion | 2009
A. M. G. Pinto; A.G. Magalhães; R.D.S.G. Campilho; M.F.S.F. de Moura; A. P. M. Baptista
In this study, the tensile strength of single-lap joints (SLJs) between similar and dissimilar adherends bonded with an acrylic adhesive was evaluated experimentally and numerically. The adherend materials included polyethylene (PE), polypropylene (PP), carbon-epoxy (CFRP), and glass-polyester (GFRP) composites. The following adherend combinations were tested: PE/PE, PE/PP, PE/CFRP, PE/GFRP, PP/PP, CFRP/CFRP, and GFRP/GFRP. One of the objectives of this work was to assess the influence of the adherends stiffness on the strength of the joints since it significantly affects the peel stresses magnitude in the adhesive layer. The experimental results were also used to validate a new mixed-mode cohesive damage model developed to simulate the adhesive layer. Thus, the experimental results were compared with numerical simulations performed in ABAQUS®, including a developed mixed-mode (I+II) cohesive damage model, based on the indirect use of fracture mechanics and implemented within interface finite elements. The cohesive laws present a trapezoidal shape with an increasing stress plateau, to reproduce the behaviour of the ductile adhesive used. A good agreement was found between the experimental and numerical results.
International Journal of Adhesion and Adhesives | 2012
R.D.S.G. Campilho; A. M. G. Pinto; M. D. Banea; L.F.M. da Silva
Abstract Joining of components with structural adhesives is currently one of the most widespread techniques for advanced structures (e.g., aerospace or aeronautical). Adhesive bonding does not involve drilling operations and it distributes the load over a larger area than mechanical joints. However, peak stresses tend to develop near the overlap edges because of differential straining of the adherends and load asymmetry. As a result, premature failures can be expected, especially for brittle adhesives. Moreover, bonded joints are very sensitive to the surface treatment of the material, service temperature, humidity and ageing. To surpass these limitations, the combination of adhesive bonding with spot-welding is a choice to be considered, adding a few advantages like superior static strength and stiffness, higher peeling and fatigue strength and easier fabrication, as fixtures during the adhesive curing are not needed. The experimental and numerical study presented here evaluates hybrid spot-welded/bonded single-lap joints in comparison with the purely spot-welded and bonded equivalents. A parametric study on the overlap length ( L O ) allowed achieving different strength advantages, up to 58% compared to spot-welded joints and 24% over bonded joints. The Finite Element Method (FEM) and Cohesive Zone Models (CZM) for damage growth were also tested in Abaqus ® to evaluate this technique for strength prediction, showing accurate estimations for all kinds of joints.
Materials Science Forum | 2010
A. M. G. Pinto; A.G. Magalhães; R.D.S.G. Campilho; Lucas F. M. da Silva; J.A.G. Chousal; A.P.M. Baptista
In this work, the shear modulus and strength of the acrylic adhesive 3M® DP 8005 was evaluated by two different methods: the Thick Adherend Shear Test (TAST) and the Notched Plate Shear Method (Arcan). However, TAST standards advise the use of a special extensometer attached to the specimen, which requires a very experienced technician. In the present study, the adhesive shear displacement for the TAST was measured using an optical technique, and also with a conventional inductive extensometer of 25 mm used for tensile tests. This allowed for an assessment of suitability of using a conventional extensometer to measure this parameter. Since the results obtained by the two techniques are identical, it can be concluded that using a conventional extensometer is a valid option to obtain the shear modulus for the particular adhesive used. In the Arcan tests, the adhesive shear displacement was only measured using the optical technique. This work also aimed the comparison of shear modulus and strength obtained by the TAST and Arcan test methods.
Materials Science Forum | 2010
R.D.S.G. Campilho; M.F.S.F. de Moura; A. M. G. Pinto; Dimitra A. Ramantani
The interlaminar fracture toughness in pure mode II (GIIc) of a Carbon-Fibre Reinforced Plastic (CFRP) composite is characterized experimentally and numerically in this work, using the End-Notched Flexure (ENF) fracture characterization test. The value of GIIc was extracted by a new data reduction scheme avoiding the crack length measurement, named Compliance-Based Beam Method (CBBM). This method eliminates the crack measurement errors, which can be non-negligible, and reflect on the accuracy of the fracture energy calculations. Moreover, it accounts for the Fracture Process Zone (FPZ) effects. A numerical study using the Finite Element Method (FEM) and a triangular cohesive damage model, implemented within interface finite elements and based on the indirect use of Fracture Mechanics, was performed to evaluate the suitability of the CBBM to obtain GIIc. This was performed comparing the input values of GIIc in the numerical models with the ones resulting from the application of the CBBM to the numerical load-displacement (P-) curve. In this numerical study, the Compliance Calibration Method (CCM) was also used to extract GIIc, for comparison purposes.
Journal of Adhesion Science and Technology | 2012
A. M. G. Pinto; R.D.S.G. Campilho; Isabel R. Mendes; Luís Miguel P. Durão; R. F. Silva; A. P. M. Baptista
Abstract In this work, an experimental study was performed on the influence of plug-filling, loading rate and temperature on the tensile strength of single-strap (SS) and double-strap (DS) repairs on aluminium structures. Whilst the main purpose of this work was to evaluate the feasibility of plug-filling for the strength improvement of these repairs, a parallel study was carried out to assess the sensitivity of the adhesive to external features that can affect the repairs performance, such as the rate of loading and environmental temperature. The experimental programme included repairs with different values of overlap length (L O = 10, 20 and 30 mm), and with and without plug-filling, whose results were interpreted in light of experimental evidence of the fracture modes and typical stress distributions for bonded repairs. The influence of the testing speed on the repairs strength was also addressed (considering 0.5, 5 and 25 mm/min). Accounting for the temperature effects, tests were carried out at room temperature (≈23°C), 50 and 80°C. This permitted a comparative evaluation of the adhesive tested below and above the glass transition temperature (T g), established by the manufacturer as 67°C. The combined influence of these two parameters on the repairs strength was also analysed. According to the results obtained from this work, design guidelines for repairing aluminium structures were recommended.
Materials Science Forum | 2010
A. M. G. Pinto; A.G. Magalhães; R.D.S.G. Campilho; Marcelo F.S.F. de Moura; A.P.M. Baptista
Polyolefins are especially difficult to bond due to their non-polar, non-porous and chemically inert surfaces. Acrylic adhesives used in industry are particularly suited to bond these materials, including many grades of polypropylene (PP) and polyethylene (PE), without special surface preparation. In this work, the tensile strength of single-lap PE and mixed joints bonded with an acrylic adhesive was investigated. The mixed joints included PE with aluminium (AL) or carbon fibre reinforced plastic (CFRP) substrates. The PE substrates were only cleaned with isopropanol, which assured cohesive failures. For the PE CFRP joints, three different surfaces preparations were employed for the CFRP substrates: cleaning with acetone, abrasion with 100 grit sand paper and peel-ply finishing. In the PE AL joints, the AL bonding surfaces were prepared by the following methods: cleaning with acetone, abrasion with 180 and 320 grit sand papers, grit blasting and chemical etching with chromic acid. After abrasion of the CFRP and AL substrates, the surfaces were always cleaned with acetone. The tensile strengths were compared with numerical results from ABAQUS® and a mixed mode (I+II) cohesive damage model. A good agreement was found between the experimental and numerical results, except for the PE AL joints, since the AL surface treatments were not found to be effective.
Materials Science Forum | 2008
A. M. G. Pinto; A.G. Magalhães; F. Gomes da Silva; A.P.M. Baptista
The mechanical behaviour of single lap adhesive joints was characterized, using two commercial acrylic adhesives. For this purpose the surfaces were cleaned and abraded using fine grit abrasives. The effect of temperature and moisture in the mechanical strength was, also, evaluated. For this characterization, mechanical tests were carried out according procedure and geometry foreseen by ASTM D3163-01 [1] and ASTM D4501-01 [2] standards. The results show that it is possible to get good strengths without great surface preparation. The temperature and moisture effect observed don’t seem to be relevant for the mechanical behaviour.
International Journal of Adhesion and Adhesives | 2011
R.D.S.G. Campilho; M. D. Banea; A. M. G. Pinto; L.F.M. da Silva; A.M.P. de Jesus
Composites Part B-engineering | 2009
R.D.S.G. Campilho; M.F.S.F. de Moura; A. M. G. Pinto; J.J.L. Morais; J.J.M.S. Domingues