Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. M. Walsh is active.

Publication


Featured researches published by A. M. Walsh.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1999

Review of the development of diamond radiation sensors

Wolfgang Adam; C. Bauer; E. Berdermann; P. Bergonzo; F. Bogani; E. Borchi; A. Brambilla; M. Bruzzi; C. Colledani; J. Conway; Wladyslaw Dabrowski; P. Delpierre; A. Deneuville; W. Dulinski; B. Van Eijk; A. Fallou; F. Fizzotti; F. Foulon; M. Friedl; K. K. Gan; E. Gheeraert; E. Grigoriev; G. Hallewell; R. Hall-Wilton; S. Han; F. Hartjes; J. Hrubec; D. Husson; H. Kagan; D Kania

Abstract Diamond radiation sensors produced by chemical vapour deposition are studied for the application as tracking detectors in high luminosity experiments. Sensors with a charge collection distance up to 250 μm have been manufactured. Their radiation hardness has been studied with pions, proton and neutrons up to fluences of 1.9×10 15 π cm −2 , 5×10 15 p cm −2 and 1.35×10 15 n cm −2 , respectively. Diamond micro-strip detectors with 50 μm pitch have been exposed in a high-energy test beam in order to investigate their charge collection properties. The measured spatial resolution using a centre-of-gravity position finding algorithm corresponds to the digital resolution for this strip pitch. First results from a strip tracker with a 2×4 cm 2 surface area are reported as well as the performance of a diamond tracker read out by radiation-hard electronics with 25 ns shaping time. Diamond pixel sensors have been prepared to match the geometries of the recently available read-out chip prototypes for ATLAS and CMS. Beam test results are shown from a diamond detector bump-bonded to an ATLAS prototype read-out. They demonstrate a 98% bump-bonding efficiency and a digital resolution in both dimensions.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2000

Pulse height distribution and radiation tolerance of CVD diamond detectors

Wolfgang Adam; E. Berdermann; P. Bergonzo; G. Bertuccio; F. Bogani; E. Borchi; A. Brambilla; M. Bruzzi; C. Colledani; J. Conway; P. D'Angelo; W. Dabrowski; P. Delpierre; A. Deneuville; W. Dulinski; B. Van Eijk; A. Fallou; F. Fizzotti; F. Foulon; M. Friedl; K. K. Gan; E. Gheeraert; E. Grigoriev; G. Hallewell; S. Han; F. Hartjes; J. Hrubec; D. Husson; H. Kagan; D Kania

The paper reviews measurements of the radiation tolerance of CVD diamond for irradiation with 24 GeV/c protons, 300 MeV/c pions and 1 MeV neutrons. For proton and neutron irradiation, the measured charge signal spectrum is compared with the spectrum calculated by a model. Irradiation by particles causes radiation damage leading to a decrease of the charge signal. However, both the measurements and the outcome from the model shows that for tracker applications this drawback is at least partly counterbalanced by a narrowing of the distribution curve of the charge signal. In addition, we observed after proton irradiation at the charge signal spectrum a decrease of the number of small signals. As a result, the efficiency of a CVD diamond tracker is less affected by irradiation than the mean charge signal. (11 refs).


nuclear science symposium and medical imaging conference | 1998

Tracking with CVD diamond radiation sensors at high luminosity colliders

S. Schnetzer; Wolfgang Adam; C. Bauer; E. Berdermann; P. Bergonzo; F. Bogani; E. Borchi; A. Brambilla; M. Bruzzi; C. Colledani; J. Conway; W. Dabrowski; J. DaGraca; P. Delpierre; A. Deneuville; W. Dulinski; B. Van Eijk; A. Fallou; F. Fizzotti; F. Foulon; M. Friedl; K. K. Gan; E. Gheeraert; E. Grigoriev; G. Hallewell; R. Hall-Wilton; S. Han; F. Hartjes; J. Hrubec; D. Husson

Recent progress on developing diamond-based sensors for vertex detection at high luminosity hadron colliders is described. Measurements of the performance of diamond sensors after irradiation to fluences of up to 5/spl times/10/sup 15/ hadrons/cm/sup 2/ are shown. These indicate that diamond sensors will operate at distances as close as 5 cm from the interaction point at the Large Hadron Collider (LHC) for many years at full luminosity without significant degradation in performance. Measurements of the quality of the signals from diamond sensors as well as spatial uniformity are presented. Test beam results on measurements of diamond-based microstrip and pixels devices are described.


Diamond and Related Materials | 2001

CVD diamond sensors for charged particle detection

M. Krammer; Wolfgang Adam; E. Berdermann; P. Bergonzo; G. Bertuccio; F. Bogani; E. Borchi; A. Brambilla; M. Bruzzi; C. Colledani; J. Conway; P. D'Angelo; Wladyslaw Dabrowski; P. Delpierre; A. Deneuville; W. Dulinski; B. Van Eijk; A. Fallou; F. Fizzotti; F. Foulon; M. Friedl; K. K. Gan; E. Gheeraert; G. Hallewell; S. Han; F. Hartjes; J. Hrubec; D. Husson; H. Kagan; D Kania

Abstract CVD diamond material was used to build position-sensitive detectors for single-charged particles to be employed in high-intensity physics experiments. To obtain position information, metal contacts shaped as strips or pixels are applied to the detector surface for one- or two-dimensional coordinate measurement. Strip detectors 2×4 cm2 in size with a strip distance of 50 μm were tested. Pixel detectors of various pixel sizes were bump bonded to electronics chips and investigated. A key issue for the use of these sensors in high intensity experiments is the radiation hardness. Several irradiation experiments were carried out with pions, protons and neutrons exceeding a fluence of 1015 particles/cm2. The paper presents an overview of the results obtained with strip and pixel detectors in high-energy test beams and summarises the irradiation studies.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2002

Performance of irradiated CVD diamond micro-strip sensors

Wolfgang Adam; E. Berdermann; P. Bergonzo; G. Bertuccio; F. Bogani; E. Borchi; A. Brambilla; M. Bruzzi; C. Colledani; J. Conway; P. D'Angelo; Wladyslaw Dabrowski; P. Delpierre; A. Deneuville; W. Dulinski; B. Van Eijk; A. Fallou; F. Fizzotti; F. Foulon; M. Friedl; K. K. Gan; E. Gheeraert; G. Hallewell; S. Han; F. Hartjes; J. Hrubec; D. Husson; H. Kagan; D Kania; J. Kaplon

Abstract CVD diamond detectors are of interest for charged particle detection and tracking due to their high radiation tolerance. In this article, we present, for the first time, beam test results from recently manufactured CVD diamond strip detectors and their behavior under low doses of electrons from a β-source and the performance before and after intense (>10 15 /cm 2 ) proton- and pion-irradiations. We find that low dose irradiation increase the signal-to-noise ratio (pumping of the signal) and slightly deteriorate the spatial resolution. Intense irradiation with protons 2.2×10 15 p / cm 2 lowers the signal-to-noise ratio slightly. Intense irradiation with pions 2.9×10 15 π / cm 2 lowers the signal-to-noise ratio more. The spatial resolution of the diamond sensors improves after irradiations.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2000

Micro-strip sensors based on CVD diamond

Wolfgang Adam; E. Berdermann; P. Bergonzo; G. Bertuccio; F. Bogani; E. Borchi; A. Brambilla; M. Bruzzi; C. Colledani; J. Conway; P. D'Angelo; Wladyslaw Dabrowski; P. Delpierre; A. Deneuville; W. Dulinski; B. Van Eijk; A. Fallou; F. Fizzotti; F. Foulon; M. Friedl; K. K. Gan; E. Gheeraert; G. Hallewell; S. Han; F. Hartjes; J. Hrubec; D. Husson; H. Kagan; D Kania; J. Kaplon

Abstract In this article we present the performance of recent chemical vapour deposition (CVD) diamond micro-strip sensors in beam tests. In addition, we present the first comparison of a CVD diamond micro-strip sensor before and after proton irradiation.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2002

Intercalibration of the longitudinal segments of a calorimeter system

M. Albrow; S. Aota; G. Apollinari; T. Asakawa; M. W. Bailey; P. de Barbaro; V. Barnes; D. Benjamin; S. R. Blusk; A. Bodek; G. Bolla; H. S. Budd; D. Cauz; L. Demortier; Y. Fukui; Y. Gotra; S. R. Hahn; T. Handa; K. Hatakeyama; H. Ikeda; G. Introzzi; J. Iwai; S. H. Kim; A. Köngeter; W. Kowald; A. T. Laasanen; J. I. Lamoureux; M. Lindgren; J. B. Liu; O. Lobban

Three different methods of setting the hadronic energy scale of a longitudinally segmented calorimeter system are compared with each other. The merits of these methods have been studied with testbeam data from the CDF Plug Upgrade Calorimeter. It turns out that one of the (commonly used) calibration methods introduces a number of undesirable side effects, such as an increased hadronic signal nonlinearity and trigger biases resulting from the fact that the reconstructed energy of hadrons depends on the starting point of their showers. These problems can be avoided when a different calibration method is used. The results of this study are applied to determine the e/h values of the calorimeter and its segments.


ieee nuclear science symposium | 1996

Performance of CVD diamond microstrip detectors under particle irradiation

M. M. Zoeller; Wolfgang Adam; C. Bauer; I. Baumann; C. Colledani; J. Conway; P. Delpierre; F. Djama; W. Dulinski; A. Fallou; D. Fish; K. K. Gan; E. Grigoriev; G. Hallewell; R. Hall-Wilton; S. Han; J. Hrubec; D. Husson; H. Kagan; D. R. Kania; R. Kass; K.T. Knöpfle; Manfred Krammer; P.F. Manfredi; D. Meier; L.S. Pan; H. Pernegger; M. Pernicka; V. Re; S. Roe

The inherent properties of diamond make it an ideal material for detectors in the high rate, high radiation environments near the collision point of future colliders such as the LHC. We have constructed charged particle position sensitive detectors using high quality Chemical Vapour Deposited (CVD) diamond. Using detectors with a 50 /spl mu/m strip pitch, we achieved a most probable signal-to-noise ratio of 27/1 and a position resolution of 12-15 /spl mu/m. To ascertain the radiation hardness properties of CVD diamond, we have exposed detectors to 10 MRad /sup 60/Co, 5/spl times/10/sup 14/ 300 MeV pions/cm/sup 2/, 10/sup 14/ 500 MeV protons/cm/sup 2/, and 10/sup 15/ neutrons/cm/sup 2/. The results show that CVD diamond is an extremely radiation hard material and well suited for particle detector production.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1999

A preshower detector for the CDF Plug Upgrade: test beam results

M. Albrow; S. Aota; Giorgio Apollinari; T. Asakawa; M. W. Bailey; P. de Barbaro; V. Barnes; D. Benjamin; K. Biery; S. R. Blusk; A. Bodek; G. Bolla; L. Breccia; R. Brunetti; H. S. Budd; D. Cauz; L. Demortier; I. Fiori; M. Frautschi; Y. Fukui; Opher Ganel; Y. Gotra; S. R. Hahn; T. Handa; K. Hatakeyama; H. Ikeda; G. Introzzi; J. Iwai; T. Kikuchi; S. H. Kim

A preshower detector consisting of plastic scintillating plates with optical-fiber readout was tested at the Fermilab meson beamline. The detector was placed at a depth of about 1.5X0, followed by an electromagnetic and hadronic calorimeter, and exposed to positron, positively charged pion and positive muon beams with energies in the range of 5–227 GeV. Multianode phototubes, HAMAMATSU R5900-M16, were used for the photon readout. The efficiency for detecting two minimum ionizing particles with noise occupancy of <1% was 90–100% for gains of (1–4)×105. It was also found that by requiring an appropriately large signal in the preshower detector, the rate of charged pions depositing a large fraction of energy in the electromagnetic calorimeter could be reduced by a factor of 1.4–2.0 (1.4–2.8) while keeping 95% (90%) efficiency for positrons.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2002

Radiation tolerance of CVD diamond detectors for pions and protons

Wolfgang Adam; E. Berdermann; P. Bergonzo; G. Bertuccio; F. Bogani; E. Borchi; A. Brambilla; M. Bruzzi; C. Colledani; J. Conway; P. D’Angelo; Wladyslaw Dabrowski; P. Delpierre; A. Deneuville; W. Dulinski; B. Van Eijk; A. Fallou; F. Fizzotti; F. Foulon; M. Friedl; K. K. Gan; E. Gheeraert; G. Hallewell; S. Han; F. Hartjes; J. Hrubec; D. Husson; H. Kagan; D Kania; J. Kaplon

Collaboration


Dive into the A. M. Walsh's collaboration.

Top Co-Authors

Avatar

K. K. Gan

Ohio State University

View shared research outputs
Top Co-Authors

Avatar

J. Hrubec

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

A. Fallou

Ohio State University

View shared research outputs
Top Co-Authors

Avatar

H. Kagan

Ohio State University

View shared research outputs
Top Co-Authors

Avatar

J. Conway

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

S. Han

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

E. Borchi

University of Florence

View shared research outputs
Top Co-Authors

Avatar

F. Bogani

University of Florence

View shared research outputs
Top Co-Authors

Avatar

M. Bruzzi

University of Florence

View shared research outputs
Top Co-Authors

Avatar

C. Colledani

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge