A. Maiorano
Sapienza University of Rome
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Maiorano.
Computing in Science and Engineering | 2009
F. Belletti; M. Cotallo; A. Cruz; L. A. Fernandez; A. Gordillo-Guerrero; M. Guidetti; A. Maiorano; F. Mantovani; Enzo Marinari; V. Martin-Mayor; A. Muoz-Sudupe; D. Navarro; Giorgio Parisi; S. Perez-Gaviro; Mauro Rossi; J. J. Ruiz-Lorenzo; Sebastiano Fabio Schifano; D. Sciretti; A. Tarancón; R. Tripiccione; J.L. Velasco; D. Yllanes; Gianpaolo Zanier
Janus is a modular, massively parallel, and reconfigurable FPGA-based computing system. Each Janus module has one computational core and one host. Janus is tailored to, but not limited to, the needs of a class of hard scientific applications characterized by regular code structure, unconventional data-manipulation requirements, and a few Megabits database. The authors discuss this configurable systems architecture and focus on its use for Monte Carlo simulations of statistical mechanics, as Janus performs impressively on this class of application.
Journal of Statistical Mechanics: Theory and Experiment | 2010
R. Alvarez Banos; A. Cruz; L. A. Fernandez; J. M. Gil-Narvion; A. Gordillo-Guerrero; M. Guidetti; A. Maiorano; F. Mantovani; Enzo Marinari; V. Martin-Mayor; J. Monforte-Garcia; A. Muñoz Sudupe; D. Navarro; Giorgio Parisi; S. Perez-Gaviro; J. J. Ruiz-Lorenzo; Sebastiano Fabio Schifano; B. Seoane; A. Tarancón; R. Tripiccione; D. Yllanes
We present a massive equilibrium simulation of the three-dimensional Ising spin glass at low temperatures. The Janus special-purpose computer has allowed us to equilibrate, using parallel tempering, L = 32 lattices down to T ≈ 0.64Tc. We demonstrate the relevance of equilibrium finite-size simulations to understand experimental non-equilibrium spin glasses in the thermodynamical limit by establishing a time-length dictionary. We conclude that non-equilibrium experiments performed on a time scale of one hour can be matched with equilibrium results on L ≈ 110 lattices. A detailed investigation of the probability distribution functions of the spin and link overlap, as well as of their correlation functions, shows that Replica Symmetry Breaking is the appropriate theoretical framework for the physically relevant length scales. Besides, we improve over existing methodologies to ensure equilibration in parallel tempering simulations.
Physical Review Letters | 2008
F. Belletti; M. Cotallo; A. Cruz; L. A. Fernandez; A. Gordillo-Guerrero; M. Guidetti; A. Maiorano; F. Mantovani; Enzo Marinari; V. Martin-Mayor; A. Muñoz Sudupe; D. Navarro; Giorgio Parisi; S. Perez-Gaviro; J. J. Ruiz-Lorenzo; Sebastiano Fabio Schifano; D. Sciretti; A. Tarancón; R. Tripiccione; J. L. Velasco; D. Yllanes
We study numerically the nonequilibrium dynamics of the Ising spin glass, for a time spanning 11 orders of magnitude, thus approaching the experimentally relevant scale (i.e., seconds). We introduce novel analysis techniques to compute the coherence length in a model-independent way. We present strong evidence for a replicon correlator and for overlap equivalence. The emerging picture is compatible with noncoarsening behavior.
Journal of Statistical Physics | 2009
F. Belletti; A. Cruz; L. A. Fernandez; A. Gordillo-Guerrero; M. Guidetti; A. Maiorano; F. Mantovani; Enzo Marinari; V. Martin-Mayor; J. Monforte; A. Muñoz Sudupe; D. Navarro; Giorgio Parisi; S. Perez-Gaviro; J. J. Ruiz-Lorenzo; Sebastiano Fabio Schifano; D. Sciretti; A. Tarancón; R. Tripiccione; D. Yllanes
Using the special-purpose computer Janus, we follow the nonequilibrium dynamics of the Ising spin glass in three dimensions for eleven orders of magnitude. The use of integral estimators for the coherence and correlation lengths allows us to study dynamic heterogeneities and the presence of a replicon mode and to obtain safe bounds on the Edwards-Anderson order parameter below the critical temperature. We obtain good agreement with experimental determinations of the temperature-dependent decay exponents for the thermoremanent magnetization. This magnitude is observed to scale with the much harder to measure coherence length, a potentially useful result for experimentalists. The exponents for energy relaxation display a linear dependence on temperature and reasonable extrapolations to the critical point. We conclude examining the time growth of the coherence length, with a comparison of critical and activated dynamics.
Computing in Science and Engineering | 2006
F. Belletti; I. Campos; A. Maiorano; S.P. Gavir; D. Sciretti; A. Tarancón; J.L. Velasco; Andres Cruz Flor; D. Navarro; P. Tellez; L. A. Fernandez; V. Martin-Mayor; Antonio Muñoz Sudupe; S. Jimenez; Enzo Marinari; F. Mantovani; G. Poll; Sebastiano Fabio Schifano; L. Tripiccione; J. J. Ruiz-Lorenzo
With Ianus, a next-generation field-programmable gate array (FPGA)-based machine, the authors hope to build a system that can fully exploit the performance potential of FPGA devices. A software platform that simplifies Ianus programming will extend its intended application range to a wide class of interesting and computationally demanding problems.
Physical Review B | 2013
Marco Baity-Jesi; Raquel A. Baños; A. Cruz; L. A. Fernandez; J. M. Gil-Narvion; A. Gordillo-Guerrero; D. Iñiguez; A. Maiorano; F. Mantovani; Enzo Marinari; V. Martin-Mayor; J. Monforte-Garcia; A. Muñoz Sudupe; D. Navarro; Giorgio Parisi; S. Perez-Gaviro; Marcello Pivanti; Federico Ricci-Tersenghi; J. J. Ruiz-Lorenzo; Sebastiano Fabio Schifano; B. Seoane; A. Tarancón; R. Tripiccione; D. Yllanes
We report a high-precision finite-size scaling study of the critical behavior of the three-dimensional Ising Edwards-Anderson model (the Ising spin glass). We have thermalized lattices up to L = 40 using the Janus dedicated computer. Our analysis takes into account leading-order corrections to scaling. We obtain Tc = 1.1019(29) for the critical temperature, ν = 2.562(42) for the thermal exponent, η = −0.3900(36) for the anomalous dimension, and ω = 1.12(10) for the exponent of the leading corrections to scaling. Standard (hyper)scaling relations yield α = −5.69(13), β = 0.782(10), and γ = 6.13(11). We also compute several universal quantities at Tc.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Raquel A. Baños; A. Cruz; L. A. Fernandez; J. M. Gil-Narvion; A. Gordillo-Guerrero; M. Guidetti; D. Iñiguez; A. Maiorano; Enzo Marinari; V. Martin-Mayor; J. Monforte-Garcia; Antonio Muñoz Sudupe; D. Navarro; Giorgio Parisi; S. Perez-Gaviro; J. J. Ruiz-Lorenzo; Sebastiano Fabio Schifano; B. Seoane; A. Tarancón; P. Tellez; R. Tripiccione; D. Yllanes
Spin glasses are a longstanding model for the sluggish dynamics that appear at the glass transition. However, spin glasses differ from structural glasses in a crucial feature: they enjoy a time reversal symmetry. This symmetry can be broken by applying an external magnetic field, but embarrassingly little is known about the critical behavior of a spin glass in a field. In this context, the space dimension is crucial. Simulations are easier to interpret in a large number of dimensions, but one must work below the upper critical dimension (i.e., in d < 6) in order for results to have relevance for experiments. Here we show conclusive evidence for the presence of a phase transition in a four-dimensional spin glass in a field. Two ingredients were crucial for this achievement: massive numerical simulations were carried out on the Janus special-purpose computer, and a new and powerful finite-size scaling method.
Physical Review Letters | 2010
R. Alvarez Banos; A. Cruz; L. A. Fernandez; J. M. Gil-Narvion; A. Gordillo-Guerrero; M. Guidetti; A. Maiorano; F. Mantovani; Enzo Marinari; V. Martin-Mayor; J. Monforte-Garcia; A. Muñoz Sudupe; D. Navarro; Giorgio Parisi; S. Perez-Gaviro; J. J. Ruiz-Lorenzo; Sebastiano Fabio Schifano; B. Seoane; A. Tarancón; R. Tripiccione; D. Yllanes
We numerically study the aging properties of the dynamical heterogeneities in the Ising spin glass. We find that a phase transition takes place during the aging process. Statics-dynamics correspondence implies that systems of finite size in equilibrium have static heterogeneities that obey finite-size scaling, thus signaling an analogous phase transition in the thermodynamical limit. We compute the critical exponents and the transition point in the equilibrium setting, and use them to show that aging in dynamic heterogeneities can be described by a finite-time scaling ansatz, with potential implications for experimental work.
European Physical Journal-special Topics | 2012
Marco Baity-Jesi; Raquel A. Baños; A. Cruz; L. A. Fernandez; J. M. Gil-Narvion; A. Gordillo-Guerrero; M. Guidetti; D. Iñiguez; A. Maiorano; F. Mantovani; Enzo Marinari; V. Martin-Mayor; J. Monforte-Garcia; A. Muñoz Sudupe; D. Navarro; Giorgio Parisi; Marcello Pivanti; S. Perez-Gaviro; Federico Ricci-Tersenghi; J. J. Ruiz-Lorenzo; Sebastiano Fabio Schifano; B. Seoane; A. Tarancón; P. Tellez; R. Tripiccione; D. Yllanes
We describe Janus, a massively parallel FPGA-based computer optimized for the simulation of spin glasses, theoretical models for the behavior of glassy materials. FPGAs (as compared to GPUs or many-core processors) provide a complementary approach to massively parallel computing. In particular, our model problem is formulated in terms of binary variables, and floating-point operations can be (almost) completely avoided. The FPGA architecture allows us to run many independent threads with almost no latencies in memory access, thus updating up to 1024 spins per cycle. We describe Janus in detail and we summarize the physics results obtained in four years of operation of this machine; we discuss two types of physics applications: long simulations on very large systems (which try to mimic and provide understanding about the experimental non-equilibrium dynamics), and low-temperature equilibrium simulations using an artificial parallel tempering dynamics. The time scale of our non-equilibrium simulations spans eleven orders of magnitude (from picoseconds to a tenth of a second). On the other hand, our equilibrium simulations are unprecedented both because of the low temperatures reached and for the large systems that we have brought to equilibrium. A finite-time scaling ansatz emerges from the detailed comparison of the two sets of simulations. Janus has made it possible to perform spin-glass simulations that would take several decades on more conventional architectures. The paper ends with an assessment of the potential of possible future versions of the Janus architecture, based on state-of-the-art technology.
Computer Physics Communications | 2014
Marco Baity-Jesi; Raquel A. Baños; A. Cruz; L. A. Fernandez; J. M. Gil-Narvion; A. Gordillo-Guerrero; D. Iñiguez; A. Maiorano; F. Mantovani; Enzo Marinari; V. Martin-Mayor; J. Monforte-Garcia; A. Muñoz Sudupe; D. Navarro; Giorgio Parisi; S. Perez-Gaviro; Marcello Pivanti; Federico Ricci-Tersenghi; J. J. Ruiz-Lorenzo; Sebastiano Fabio Schifano; B. Seoane; A. Tarancón; R. Tripiccione; D. Yllanes
This paper describes the architecture, the development and the implementation of Janus II, a new generation application-driven number cruncher optimized for Monte Carlo simulations of spin systems (mainly spin glasses). This domain of computational physics is a recognized grand challenge of high-performance computing: the resources necessary to study in detail theoretical models that can make contact with experimental data are by far beyond those available using commodity computer systems. On the other hand, several specific features of the associated algorithms suggest that unconventional computer architectures – that can be implemented with available electronics technologies – may lead to order of magnitude increases in performance, reducing to acceptable values on human scales the time needed to carry out simulation campaigns that would take centuries on commercially available machines. Janus II is one such machine, recently developed and commissioned, that builds upon and improves on the successful JANUS machine, which has been used for physics since 2008 and is still in operation today. This paper describes in detail the motivations behind the project, the computational requirements, the architecture and the implementation of this new machine and compares its expected performances with those of currently available commercial systems.