Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where A. Marchionni is active.

Publication


Featured researches published by A. Marchionni.


arXiv: High Energy Physics - Phenomenology | 2007

REPORT OF THE US LONG BASELINE NEUTRINO EXPERIMENT STUDY.

V. Barger; D. Finley; C. Laughton; S. Pordes; A. Marchionni; R. Rameika; N. Saoulidou; R. Zwaska; M. Bishai; M. V. Diwan; M. Dierckxsens; H. Kirk; S. Kahn; N. Simos; W. Marciano; Z. Parsa; B. Viren; A L Et

This report provides the results of an extensive and important study of the potential for a U.S. scientific program that will extend our knowledge of neutrino oscillations well beyond what can be anticipated from ongoing and planned experiments worldwide. The program examined here has the potential to provide the U.S. particle physics community with world leading experimental capability in this intensely interesting and active field of fundamental research. Furthermore, this capability is not likely to be challenged anywhere else in the world for at least two decades into the future. The present study was initially commissioned in April 2006 by top research officers of Brookhaven National Laboratory and Fermilab and, as the study evolved, it also provides responses to questions formulated and addressed to the study group by the Neutrino Scientific Advisory Committee (NuSAG) of the U.S. DOE and NSF. The participants in the study, its Charge and history, plus the study results and conclusions are provided in this report and its appendices. A summary of the conclusions is provided in the Executive Summary.


European Physical Journal C | 2001

On particle production for high energy neutrino beams

M. Bonesini; A. Marchionni; F. Pietropaolo; T. Tabarelli de Fatis

Abstract. Analytical formulae for the calculation of secondary particle yields in p-A interactions are given. These formulae can be of great practical importance for fast calculations of neutrino fluxes and for designing new neutrino beam-lines. The formulae are based on a parameterization of the inclusive invariant cross sections for secondary particle production measured in p-Be interactions. Data collected in different energy ranges and kinematic regions are used. The accuracy of the fit to the data with the empirical formulae adopted is within the experimental uncertainties. Prescriptions to extrapolate this parameterization to finite targets and to targets of different materials are given. The results obtained are then used as an input for the simulation of neutrino beams. We show that our approach describes well the main characteristics of measured neutrino spectra at CERN. Thus it may be used in fast simulations aiming at the optimisation of the long-baseline neutrino beams at CERN and FNAL. In particular we will show our predictions for the CNGS beam from CERN to Gran Sasso.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2006

Secondary Beam Monitors for the NuMI Facility at FNAL

S. Kopp; M. Bishai; M. Dierckxsens; M. V. Diwan; A. R. Erwin; Deborah A. Harris; D. Indurthy; R. Keisler; M. Kostin; M. Lang; J. MacDonald; A. Marchionni; S. Mendoza; J. Morfin; D. Naples; D. Northacker; Ž Pavlović; L. Phelps; H. Ping; M. Proga; C. Vellissaris; B. Viren; R. Zwaska

The Neutrinos at the Main Injector (NuMI) facility is a conventional neutrino beam which produces muon neutrinos by focusing a beam of mesons into a long evacuated decay volume. We have built four arrays of ionization chambers to monitor the position and intensity of the hadron and muon beams associated with neutrino production at locations downstream of the decay volume. This article describes the chambers’ construction, calibration, and commissioning in the beam.


Physics Letters B | 1998

K/π production ratios from 450 GeV/c protons on beryllium

G. Ambrosini; R. Arsenescu; K Bernier; C. Biino; M. Bonesini; W. Bonivento; K. Borer; G Brooijmans; M.G. Catanesi; G. Collazuol; D Daniels; F. Dittus; K. Elsener; A. Godley; A. Grant; G. Grégoire; A. Guglielmi; S. Kabana; R. Klingenberg; G. Lehmann; T. Lindén; L. Linssen; A. Marchionni; S.R. Mishra; L.C. Moffitt; U. Moser; V. Palladino; F. Pietropaolo; K. Pretzl; A. Pullia

Abstract This paper reports on the charged K / π production ratios and on the shape of the p T distributions of π fluxes measured by the SPY/NA56 experiment for 450 GeV/c proton interactions on beryllium targets. The present data cover a secondary momentum range from 7 GeV/c to 135 GeV/c in the forward direction and with p T values up to 600 MeV/c. An experimental accuracy of about 3% has been achieved. These results will reduce the uncertainty on the estimation of the ν e component of neutrino beams.


Journal of Instrumentation | 2014

Liquid Argon Time Projection Chamber research and development in the United States

B. Baller; C. Bromberg; N. J. Buchanan; F. Cavanna; H. Chen; E. Church; V.M. Gehman; H. Greenlee; E. Guardincerri; B.J.P. Jones; T. Junk; T. Katori; M. Kirby; K. Lang; B Loer; A. Marchionni; T. Maruyama; C. Mauger; A Menegolli; D. Montanari; S. Mufson; B. Norris; S. Pordes; J.L. Raaf; B. Rebel; R Sanders; M. Soderberg; J. St. John; T. Strauss; A.M. Szelc

A workshop was held at Fermilab on March 20-21, 2013 to discuss the development of liquid argon time projection chambers (LArTPCs) in the United States. The workshop was organized under the auspices of the Coordinating Panel for Advanced Detectors, a body that was initiated by the American Physical Society Division of Particles and Fields. All presentations at the workshop were made in seven topical plenary sessions: i) Argon Purity, ii) Cryogenics, iii) TPC and High Voltage, iv) Electronics, Data Acquisition and Triggering, v) Scintillation Light Detection, vi) Calibration and Test Beams, and vii) Software. This document summarizes the current efforts in each of these areas. It also highlights areas in LArTPC research and development that are common between neutrino experiments and dark matter experiments.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2006

Beam-Based Alignment of the NuMI Target Station Components at FNAL

R. Zwaska; M. Bishai; S. Childress; Gary Drake; C. O. Escobar; P. Gouffon; Deborah A. Harris; J. Hylen; D. Indurthy; G. M. Koizumi; S. Kopp; P. Lucas; A. Marchionni; A. Para; Ž Pavlović; W. Smart; R. Talaga; B. Viren

The Neutrinos at the Main Injector (NuMI) facility is a conventional horn-focused neutrino beam which produces muon neutrinos from a beam of mesons directed into a long evacuated decay volume. The relative alignment of the primary proton beam, target, and focusing horns affects the neutrino energy spectrum delivered to experiments. This paper describes a check of the alignment of these components using the proton beam.


Journal of Instrumentation | 2015

Summary of the second workshop on liquid argon time projection chamber research and development in the United States

R. Acciarri; M. Adamowski; D. Artrip; B. Baller; C. Bromberg; F. Cavanna; B. Carls; H. Chen; G. Deptuch; L. Epprecht; R. Dharmapalan; W. Foreman; A. Hahn; M. Johnson; B.J.P. Jones; T. Junk; K. Lang; S. Lockwitz; A. Marchionni; C. Mauger; C. Montanari; S. Mufson; M. Nessi; H. Olling Back; G. Petrillo; S. Pordes; J.L. Raaf; B. Rebel; G. Sinins; M. Soderberg

The second workshop to discuss the development of liquid argon time projection chambers (LArTPCs) in the United States was held at Fermilab on July 8-9, 2014. The workshop was organized under the auspices of the Coordinating Panel for Advanced Detectors, a body that was initiated by the American Physical Society Division of Particles and Fields. All presentations at the workshop were made in six topical plenary sessions: i) Argon Purity and Cryogenics, ii) TPC and High Voltage, iii) Electronics, Data Acquisition and Triggering, iv) Scintillation Light Detection, v) Calibration and Test Beams, and vi) Software. This document summarizes the current efforts in each of these areas. It primarily focuses on the work in the US, but also highlights work done elsewhere in the world.


Annual Review of Nuclear and Particle Science | 2013

Status and New Ideas Regarding Liquid Argon Detectors

A. Marchionni

Large (up to ∼100 kt) liquid argon (LAr) time-projection chamber detectors are presently being considered for proton decay searches and neutrino astrophysics, as well as for far detectors for the next generation of long-baseline neutrino oscillation experiments that aim to determine neutrino mass hierarchy and search for CP violation in the leptonic sector. These detectors rely on the capabilities to assemble large volumes of LAr in ultrahigh-purity conditions, possibly in an underground environment, and to achieve relatively long drifts for the ionization charge. Several proposals have been developed, each of which takes a different approach to the design of the cryogenic vessels and has different scales of modularity to reach the final mass dictated by physics. New detector concepts, with innovative designs of readout electronics and novel methods for the readout of the ionization charge and scintillation light, have been proposed.


Archive | 2016

Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report. Volume 3: Long-Baseline Neutrino Facility for DUNE

James Strait; Elaine McCluskey; Tracy Lundin; Joshua Willhite; Thomas Hamernik; Vaia Papadimitriou; A. Marchionni; Min Jeong Kim; Marzio Nessi; David Montanari; Anne Heavey

This volume of the LBNF/DUNE Conceptual Design Report cover the Long-Baseline Neutrino Facility for DUNE and describes the LBNF Project, which includes design and construction of the beamline at Fermilab, the conventional facilities at both Fermilab and SURF, and the cryostat and cryogenics infrastructure required for the DUNE far detector.


arXiv: Accelerator Physics | 2004

Ion Chambers for Monitoring the NuMI Neutrino Beam at Fermilab

D. Indurthy; R. Keisler; S. Kopp; S. Mendoza; M. Proga; Zarko Pavlovich; R. Zwaska; Deborah A. Harris; A. Marchionni; J. Morfin; A. R. Erwin; H. Ping; C. Velissaris; D. Naples; Dave Northacker; J. McDonald; M. V. Diwan; B. Viren

The Neutrinos at the Main Injector (NuMI) beamline will deliver an intense muon neutrino beam by focusing a beam of mesons into a long evacuated decay volume. The beam must be steered with 1‐mRad angular accuracy toward the Soudan Underground Laboratory in northern Minnesota. We have built 4 arrays of ionization chambers to monitor the neutrino beam direction and quality. The arrays are located at 4 stations downstream of the decay volume, and measure the remnant hadron beam and tertiary muons produced along with neutrinos in meson decays. We review how the monitors will be used to make beam quality measurements, and as well review chamber construction details, radiation damage testing, calibration, and test beam results.

Collaboration


Dive into the A. Marchionni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Bishai

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar

R. Zwaska

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Viren

Brookhaven National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge