A. Mezzi
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by A. Mezzi.
Langmuir | 2010
Alessandra Mari; Patrizia Imperatori; Giada Marchegiani; Luciano Pilloni; A. Mezzi; S. Kaciulis; Carla Cannas; Carlo Meneghini; Settimio Mobilio; Lorenza Suber
One-phase, one-pot synthesis of Ag(0) nanoparticles capped with alkanethiolate molecules has been optimized to easily achieve a pure product in quantitative yield. We report the synthesis of dodecanethiolate-capped silver particles and the chemophysical, structural, and morphologic characterization performed by way of UV-vis, (1)H NMR, and X-ray photoelectron (XPS) spectroscopies, X-ray powder diffraction (XRD) and X-ray absorption fine structure analysis (XFAS), electron diffraction and high-resolution transmission electron microscopy (HR-TEM), and scanning and transmission electron microscopy (SEM and TEM). Depending on the molar ratio of the reagents (dodecylthiosulphate/Ag(+)), the mean Ag(0) particle size D(XRD) is tuned from 4 to 3 nm with a narrow size distribution. The particles are highly soluble, very stable in organic solvents (hexane, toluene, dichloromethane, etc.), and resistant to oxidation; the hexane solution after one year at room temperature does not show any precipitation or formation of oxidation byproducts.
Applied Catalysis A-general | 2001
M.P Casaletto; S. Kaciulis; L Lisi; G. Mattogno; A. Mezzi; Pasquale Patrono; Giovanna Ruoppolo
Iron-modified vanadyl phosphate is an interesting material with potential applications in catalysis due to the oxidising and dehydrogenating properties of the trivalent metal. Alumina-supported samples have been characterised by X-ray photoelectron spectroscopy (XPS) and compared with respect to the temperature of calcination and their catalytic behaviour in the oxidative dehydrogenation of ethane. XPS has been used to analyse the surface chemical composition of the samples and the modifications induced by different temperatures of calcination and catalysis. The oxidation state, amount, distribution and evolution of vanadium species have been investigated both after calcination at T=450 and 550°C and after catalytic tests at T=450, 550 and 650°C. Quantitative XPS analysis has been used to determine the surface concentration of different vanadium species.
Accounts of Chemical Research | 2013
Gabriel Maria Ingo; Giuseppe Guida; Emma Paola Maria Virginia Angelini; Gabriella Di Carlo; A. Mezzi; Giuseppina Padeletti
Fire gilding and silvering are age-old mercury-based processes used to coat thesurface of less precious substrates with thin layers of gold or silver. In ancient times, these methods were used to produce and decorate different types of artefacts, such as jewels, statues, amulets, and commonly-used objects. Gilders performed these processes not only to decorate objects but also to simulate the appearance of gold or silver, sometimes fraudulently. From a technological point of view, the aim of these workmen over 2000 years ago was to make the precious metal coatings as thin and adherent as possible. This was in order to save expensive metals and to improve the resistance to the wear caused by continued use and circulation. Without knowledge about the chemical-physical processes, the ancient crafts-men systematically manipulated these metals to create functional and decorative artistic objects. The mercury-based methods were also fraudulently used in ancient times to produce objects such as jewels and coins that looked like they were made of silver or gold but actually had a less precious core. These coins were minted by counterfeiters but also by the official issuing authorities. The latter was probably because of a lack of precious metals, reflecting periods of severe economic conditions. In this Account, we discuss some representative cases of gold- and silver-coatedobjects, focusing on unique and valuable Roman and Dark Ages period works of art, such as the St. Ambrogios altar (825 AD), and commonly used objects. We carried out the investigations using surface analytical methods, such as selected area X-ray photoelectron spectroscopy and scanning electron microscopy combined with energy-dispersive spectroscopy. We used these methods to investigate the surface and subsurface chemical features of these important examples of art and technology, interpreting some aspects of the manufacturing methods and of disclosing degradation agents and mechanisms. These findings may contribute to cultural heritage preservation, thus extending the applicability of the surface analytical techniques.
Journal of Hazardous Materials | 2016
Roberto Borghese; Marco Brucale; Gianuario Fortunato; Massimiliano Lanzi; A. Mezzi; Francesco Valle; Massimiliano Cavallini; Davide Zannoni
The toxic oxyanion tellurite (TeO3(2-)) is acquired by cells of Rhodobacter capsulatus grown anaerobically in the light, via acetate permease ActP2 and then reduced to Te(0) in the cytoplasm as needle-like black precipitates. Interestingly, photosynthetic cultures of R. capsulatus can also generate Te(0) nanoprecipitates (TeNPs) outside the cells upon addition of the redox mediator lawsone (2-hydroxy-1,4-naphtoquinone). TeNPs generation kinetics were monitored to define the optimal conditions to produce TeNPs as a function of various carbon sources and lawsone concentration. We report that growing cultures over a 10 days period with daily additions of 1mM tellurite led to the accumulation in the growth medium of TeNPs with dimensions from 200 up to 600-700 nm in length as determined by atomic force microscopy (AFM). This result suggests that nucleation of TeNPs takes place over the entire cell growth period although the addition of new tellurium Te(0) to pre-formed TeNPs is the main strategy used by R. capsulatus to generate TeNPs outside the cells. Finally, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) analysis of TeNPs indicate they are coated with an organic material which keeps the particles in solution in aqueous solvents.
Materials Science and Engineering: C | 2016
Alessandro Gambardella; Michele Bianchi; S. Kaciulis; A. Mezzi; Marco Brucale; M. Cavallini; T. Herrmannsdoerfer; G. Chanda; M. Uhlarz; A. Cellini; M.F. Pedna; V. Sambri; Maurilio Marcacci; Alessandro Russo
Hydroxyapatite films enriched with magnetite have been fabricated via a Pulsed Plasma Deposition (PPD) system with the final aim of representing a new platform able to disincentivate bacterial adhesion and biofilm formation. The chemical composition and magnetic properties of films were respectively examined by X-ray photoelectron spectroscopy (XPS) and Superconducting Quantum Interference Device (SQUID) measurements. The morphology and conductive properties of the magnetic films were investigated via a combination of scanning probe technologies including atomic force microscopy (AFM), electrostatic force microscopy (EFM), and scanning tunneling microscopy (STM). Interestingly, the range of adopted techniques allowed determining the preservation of the chemical composition and magnetic properties of the deposition target material while STM analysis provided new insights on the presence of surface inhomogeneities, revealing the presence of magnetite-rich islands over length scales compatible with the applications. Finally, preliminary results of bacterial adhesion tests, indicated a higher ability of magnetic hydroxyapatite films to reduce Escherichia coli adhesion at 4h from seeding compared to control hydroxyapatite films.
Journal of Materials Chemistry | 2011
Gabriel Maria Ingo; Giuseppina Padeletti; Tilde de Caro; C. Riccucci; Federica Faraldi; Antonella Curulli; A. Mezzi; Massimo Piccinini
The synthesis of randomly distributed sp2-BN nanoplates embedded in a steel matrix was achieved by using boron doped AISI 316 stainless steel as substrates and a dissociated anhydrous NH3 atmosphere at 1070 °C as the nitrogen source. The chemical and morphological nature of the BN nanoplates has been studied by means of the combined use of XPS, FESEM-EDS, FTIR, XRD and SIMS techniques. The BN nanoplates are generally 100–400 nm wide and in many cases are characterised by a triangular or quasitriangular shape with some truncated and broken nanoplates that form a film whose thickness varies from 45 to 60 nm as a function of the boron content. This synthesis has the potential for coating stainless steel vacuum components and vessel walls with a stable film inert to gas adsorption to be used for the production of the next-generation of high performance stainless steel components for vacuum technology such as particle accelerators, thin film deposition and surface analysis equipment and further, as precursors for the fabrication of c-BN nanoplates.
Materials Science Forum | 2010
Ludovica Rovatti; R. Montanari; Nadia Ucciardello; A. Mezzi; S. Kaciulis; Andrea Carosi
The discontinuous precipitation of a high-nitrogen (0.8 wt%) austenitic steel has been investigated after successive steps of heat treatment at two different temperatures (800 and 850 °C). After each step of heating the material has been examined by X-ray diffraction (XRD), optical microscopy (OM), transmission electron microscopy (TEM), Auger electron spectroscopy (AES) and microhardness tests. The precipitation of Cr2N induces the formation of a secondary austenitic phase, leads to the redistribution of N between transformed and untransformed zones and to local variations of mechanical properties.
Scientific Reports | 2017
Mauro Epifani; S. Kaciulis; A. Mezzi; Davide Altamura; Cinzia Giannini; Raül Díaz; Carmen Force; Aziz Genç; Jordi Arbiol; Pietro Siciliano; Elisabetta Comini; Isabella Concina
SnO2 nanocrystals were prepared by precipitation in dodecylamine at 100 °C, then they were reacted with vanadium chloromethoxide in oleic acid at 250 °C. The resulting materials were heat-treated at various temperatures up to 650 °C for thermal stabilization, chemical purification and for studying the overall structural transformations. From the crossed use of various characterization techniques, it emerged that the as-prepared materials were constituted by cassiterite SnO2 nanocrystals with a surface modified by isolated V(IV) oxide species. After heat-treatment at 400 °C, the SnO2 nanocrystals were wrapped by layers composed of vanadium oxide (IV-V mixed oxidation state) and carbon residuals. After heating at 500 °C, only SnO2 cassiterite nanocrystals were obtained, with a mean size of 2.8 nm and wrapped by only V2O5-like species. The samples heat-treated at 500 °C were tested as RhB photodegradation catalysts. At 10−7 M concentration, all RhB was degraded within 1 h of reaction, at a much faster rate than all pure SnO2 materials reported until now.
Materials Science Forum | 2011
Claudio Testani; F. Ferraro; Paolo Deodati; Riccardo Donnini; R. Montanari; S. Kaciulis; A. Mezzi
Titanium-metal-matrix composites (Ti-MMC) are materials with very large specific resistance and potential operative temperature up to 800° C. At present these composites are produced by Hot Isostatic Pressing (HIP), a reliable but expensive manufacturing method. To cut production costs, Centro Sviluppo Materiali SpA (CSM) has developed and patented an experimental plant for co-rolling at high temperature sheets of titanium alloy and silicon carbide monofilaments fabrics. The experimental Roll Diffusion Bonding (RDB) pilot plant permits a reduction of process costs of about 40% with respect to the HIP process. This work reports the results of microstructural and mechanical examinations carried out on composites realized by RDB and HIP. The comparison shows that the fibre-matrix interface is stable in both the composites while the mechanical properties of RDB composite are better due to its smaller grain size and high dislocation density.
Materials Science Forum | 2011
Paolo Deodati; Riccardo Donnini; S. Kaciulis; Majid Kazemian-Abyaneh; A. Mezzi; R. Montanari; Claudio Testani; Nadia Ucciardello
The paper reports the results of an extensive characterization of the Ti6Al4V-SiCf composite produced by hot isostatic pressing (HIP) to assess its capability to withstand the in-service conditions of turbine blades operating at middle temperatures in aeronautical engines. The microstructure of composite, in as-fabricated condition and after long-term heat treatments (up to 1,000 hours) in the temperature range 673-873 K, has been investigated by means of different techniques. Particular attention was paid to the micro-chemical evolution of fibre-matrix interface which is scarcely affected also by the most severe heat treatments examined here. This leads to stable mechanical properties as evidenced by hardness, tensile and FIMEC instrumented indentation tests. Therefore, the composite can operate at the maximum temperature (873 K) foreseen for its aeronautical applications without remarkable modifications of its microstructure and degradation of mechanical properties. The mechanical characterization has been completed by internal friction and dynamic modulus measurements carried out both at constant and increasing temperature, from 80 to 1173 K.